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Abstract

In this paper an approach is proposed to the problem of automatic detection
and correction of inconsistent or out of range data in a general process of data
collecting. Such errors are usually detected by formulating a set of rules which
must be respected in order the data records to be declared correct. A first rel-
evant point of the proposed procedure is that the set of rules itself is checked
for inconsistency or redundancy, by encoding it into a propositional logic for-
mula, and solving a sequence of Satisfiability problem. This set of rules is then
used to detect erroneous data. In the subsequent phase of error correction, the
above set of rules must be satisfied, but the erroneous data should be altered as
little as possible. Moreover, the statistical distribution of correct data should
be preserved. As a second relevant point, such problem is modeled by encoding
the rules with linear inequalities, and solving a sequence of set covering prob-
lems. The proposed procedure is tested by performing the entire process of error
detection and correction in the case of a Census.
Keywords: Automatic error detection and correction, Satisfiability, Set cover-
ing, Statistic projections.

1 Introduction

When dealing with a large number of collected information, a relevant problem arises:
perform all the requested elaboration considering only correct data. Examples of data
collecting are for instance cases of statistical investigations, marketing analysis, exper-
imental measures, etc. Corresponding examples of data elaboration could therefore
be calculating statistical parameters, tracing consumers profiles, estimating unknown
measured parameters, etc. Data correctness is a crucial aspect of data quality, and,
in practical cases, it has always been a very computationally demanding problem.

Seldom data are single values. Generally, they are structured into sets of values,
whose elements have a specific meaning, and are binded by specific relations. This
set of p values vi (the data) for a set of p fields fi (their meaning) is usually called a
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record R (among other, in the field of databases). We will therefore consider records
in the following form.

R = {f1 = v1, f2 = v2, . . . , fp = vp}

The problem of error detection is generally approached by formulating a set of rules
that the records must respect in order to be reliable, or consistent. In the absence
of further information, consistent records are declared correct. Instead, inconsistent
records are declared erroneous. The more accurate and careful the rules are, the
more truthful individuation of correct and erroneous data can be achieved. Such
rules can involve the value of a single field (e.g. a value vi must be within a set V ) or
a combination of values within a record (e.g. a value vi must be equal to a value vj
plus a value vk).

A first problem arising from this fact is the validation of such set of rules. In fact,
the rules could contain some contradiction among themselves, or some rule could
be implied by some other. This could result in erroneous records to be declared
correct, and vice versa. This point is discussed in more detail is in section 2. The
above problem of checking the set of rules against inconsistencies and redundancies is
transformed in a Propositional Logic problem. This is done by encoding the rules in
clauses, as explained in section 3. A sequence of propositional Satisfiability problems
(SAT for short) is therefore solved, as illustrated in section 4. This procedure allows,
moreover, to check if a new rule is in contradiction with the previous ones, or if they
already imply it. This will reveal its importance in a phase of updating.

By choosing this clausal representation, the detection of erroneous records simply
becomes the problem of testing if a propositional logic formula is satisfied by a truth
assignment for its logical variables. See section 5 for details.

Since generally information collecting has a cost, we would like to somehow utilize
erroneous records as well, by performing an error correction [20]. During such phase,
erroneous records are changed in order to satisfy the above rules. This should be done
by keeping as much as possible the correct information contained in such erroneous
records. Two general principles should be followed: to apply the minimum changes
to erroneous data, and to modify as less as possible the marginal and joint frequency
distribution of the data [11]. This is described in more detail in section 6. The
above problem is modeled by encoding the rules by linear inequalities, and solving a
sequence of set covering problems, as explained in section 7.

The proposed procedure is tested by performing the entire process of error de-
tection and correction in the case of a real world Census. The application and part
of the data were kindly provided by the Italian National Statistic Institute (ISTAT).
Results are in section 8.

2 Data Collecting through Questionnaires

Our attention will be focused on the problem of statistic projections carried out by
processing answers obtained through a collection of questionnaires. We stress that
such problem is used just as an example to apply our methodology, and of course does
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not exhaust field of application of the proposed procedure. A record, in this case, is
the set of the answers to one questionnaire Q.

Q = {f1 = v1, f2 = v2 . . . , fp = vp}

We will consider, in particular, the case of a census of population. Examples of fields
fi are age or marital status, corresponding examples of values vi are 18 or single.
Fields can be distinguished in quantitative and qualitative ones. Roughly speaking,
a quantitative field require its value to be either a real number a in some interval
[a1, a2], or an integer number n in some set N , or at least a value belonging to an
ordered set. In a quantitative field, in fact, the order operators ’<’, ’≤’, ’>’, ’≥’ must
be defined. On the other hand, a qualitative field require its value d to be a member
of some discrete set D = {d1, d2, . . . , dn}.

Errors, or, more precisely, inconsistencies between answers or out of range answers,
can be due to the original compilation of the questionnaire, or can be introduced
during any later phase of information processing, such as data input or conversion.
Inconsistent questionnaires could contain information that deeply modifies the aspects
of interest (just think of maximum or minimum of some value), and thus, without
their detection, our statistical investigation would produce erroneous results. We can
distinguish between stochastic errors and systematic errors. Stochastic errors are
randomly introduced, and can therefore be unpredictable and have in general low or
no correlation. On the other hand, systematic errors consists in a repetition of the
same error. This can be, for instance, due to some defect in the questionnaire. Of
course, both of these kinds of errors must be identified.

Generally, real world statistics involve such a high number of questionnaires that
an automatic procedure to carry out error detection is needed. Usually, National
Statistic Offices perform the task of detecting inconsistencies by formulating rules
that must be respected by every correct set of answers. More precisely, rules are
written in form of edits. An edit expresses the error condition. The following example
will clarify this point.

Example 2.1. An inconsistent answer can be to declare

marital status as married and age as 10 years old.

The rule to detect this kind of errors could be the following

if marital status is married, age must be not less than, say, 14.

The rule must be put in form of an edit, which expresses the error condition. Since we
have the error if marital status = married and age < 14, the edit for this example
would therefore be

(marital status = married) ∧ (age < 14)

The set of all the edits is sometimes called the set of edit rules, or Check plan, or
Compatibility plan, of a statistical investigation. Such set of edits is used to split
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the set of all questionnaires in the two subsets of correct ones and erroneous ones.
Questionnaires which verify the condition defined in at least one edit are declared
erroneous. We will say that such questionnaires activate the edits.

Obviously, the individuation of the set of edits itself plays a crucial role. In
fact, the set of edits must be free from inconsistency (i.e. edits must not be in
contradiction each other), and, preferably, from redundancy (i.e. do not contain edit
which are logically implied from other edits). In the case of real questionnaires, edits
can became very numerous. The cardinality of the set of edits, in fact, increases with
the number of questions in the questionnaire. Moreover, a high number of edits allows
a more accurate error detection. Test for contradictions and redundancies must be
automatically performed as well. Therefore, a form of edits representation that can
be treated by automatic elaboration is needed.

Many commercial software systems deal with the problem of questionnaires cor-
rection, and they make use of a variety of different (and sometimes naive) edits
encoding and solution algorithm [1, 25, 22]. In practical case, however, they suffer
from severe limitations, due to the inherent computational complexity of the problem.
Some methods ignore edit testing, and just separate erroneous questionnaires from
correct ones. Their limitations are that results are incorrect if edits are incorrect, and
edits updating turns out to be very difficult. This cause that number of edits must
be small enough to be validated by inspection by a human operator.

On the other hand, other methods try to check for contradiction and redundancy
by generating all implied edits, such as the ’Fellegi Holt’ procedure [11]. Their lim-
itation is that, as the number of edits slightly increases, they produce very poor
performance. This happens, of course, because of the huge demand of computational
resources required for generating all implied edits, whose number exponentially grows
with the number of original edits. The above limitations prevented to now the use of
a set of edits whose cardinality is above a certain value. Another serious drawback is
that simultaneous processing of quantitative and qualitative fields is seldom allowed.

3 A Logical Representation of the Set of Edits

The usefulness of logic or Boolean techniques is proved by many approaches to similar
problems of information representation ([5, 23] among others). This should not be
surprising, when considering the role of the science of Logic. A representation of the
set of edit by means of first-order logic is not new. This methodology turns out to be
equivalent to the ’Fellegi-Holt’ one [4], with consequent computational limitations. In
this paper we propose an edit encoding by means of the simpler propositional logic.
Treatment of numerical data is performed by a process called binarization [5].

A propositional logic formula is composed of propositions, i.e. logical variables
(also called binary, or Boolean, variables), which assume values in the set {True, False},
or, equivalently, {1, 0}, and of the logical connectives {∧,∨,⇒,⇔}, with their usual
meaning of ’and’, ’or’, ’implies’, ’is equivalent’. Propositions can be positive (a logical
variable α) or negative (a negated logical variable ¬α). Every Propositional Logic
formula can be put in conjunctive normal form (CNF), namely a conjunction (∧) of
disjunctions (∨). A CNF formula F , with n logical variables and m clauses, has the
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following general structure:

(αi1 ∨ ... ∨ αj1 ∨ ¬αk1 ∨ ... ∨ ¬αn1) ∧ . . . ∧ (αim ∨ ... ∨ αjm ∨ ¬αkm ∨ ... ∨ ¬αnm)

Given truth values (True or False) to the logical variables, we have a truth value
for the whole formula. A formula F is satisfiable if and only if there exists a truth
assignment that makes the formula True [9, 10, 16, 24]. If this does not exist, the
formula F is unsatisfiable.

The problem of testing satisfiability of propositional formulae in conjunctive nor-
mal form, named SAT, plays a protagonist role in mathematical logic and computing
theory. Actually, it is fundamental in Artificial Intelligence, Expert Systems, De-
ductive Database theory, due to its ability of formalizing deductive reasoning, and
thus solving logic problems by means of automatic computation. It is known to be
NP-complete [13]. Satisfiability problems indeed are used for encoding and solving
a wide variety of problems arisen from different fields, e.g. VLSI logic circuit design
and testing, programming language project, computer aided design. A SAT formula-
tion can be used to solve the problem of logical implication, i.e. to detect if a given
proposition is logically implied by a set of propositions [17, 14, 19, 8].

In the case of questionnaires, every edit can be encoded in a propositional logic
clause. Moreover, since the edit have a very precise syntax, this encoding can be done
by an automatic procedure. The set of edits E, written by the person entrusted of
this task at the ISTAT, and according to the grammar used by them, is therefore
transformed in a CNF propositional formula E , following the sequence of steps listed
below and described in further subsections:

Edit propositional encoding procedure

1. Identification of the domains Df for each one of the p field f , considering that
we are dealing with errors.

2. Identification of subsets S1f , S
2
f , . . . in every domain Df , defined by breakpoints,

or cut points, b1f , b
2
f , . . . obtained from the edits.

3. Identification of equivalent subsets Sjf , S
q
k, . . ., and definition of equivalence

classes Chf = [Sjf ].

4. Definition of n logical variables α[Sj
f
] to represent the equivalence classes [Sjf ].

5. Expression of all the edits by means of clauses defined over the introduced logical
variables α[Sj

f
].

6. Identification of congruency clauses to supply the information not contained in
edits.

Note that the above procedure is merely formal, i.e. not depending by the meaning
of the involved propositions. Therefore, it can be entirely performed by means of
automatic symbolic elaboration, without the need for an interpretation phase.
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3.1 Identification of the domains for the fields

In this step, the totality of possible answers need to be identified, including incorrect
ones and blank answer. Such possibilities depend, of course, on the nature of the field
(qualitative or quantitative), but also on the typographical aspect of the question in
the questionnaire (for instance, single choice question, text box question, etc.). Such
sets of possible answer, for the generic field f , will be indicated as Df . Df can include
intervals of real numbers, sets of elements, etc. A generic value belonging to domain
Df will be indicated as vf ∈ Df .

Example 3.1. Consider a field marital status represented as follows:

MaritalMaritalMaritalMarital status:status:status:status:

separate widowdivorcedmarriedsingle

Answer can vary only on a discrete set of possibilities in mutual exclusion, or, due
to errors, be missing or not meaningful (for instance when we have more than one
choice). Both latter cases are expressed with the value blank.

Dmarital status = {single, married, separate, divorced, widow, blank}

Example 3.2. Consider a field age represented as follows:

AgeAgeAgeAge:::: ���������� years

Due to errors, the totality of possible answers can be any number or be blank. Al-
though this may seem too pessimistic, note that similar choices improve robustness
of the procedure. We have

Dage = (−∞,+∞) ∪ {blank}

From the above example we can see that a quantitative field can have a domain
whose elements are not only numbers. To perform such identification of the domains
Df , a characterization of the qualitative or quantitative nature of every field and of
its typographical aspect must be given in input to the procedure.

3.2 Identification of the breakpoints for the fields

Edits are propositions involving one or more values vf1 ∈ Df1 , vf2 ∈ Df2 , . . . for one
or more fields f1, f2, . . .. As told, they state the error condition. In our application,
they may have one of the two following logical structure:

6



f1 < relation > vf1

(f1 < relation > vf1) < logic connective > (f2 < relation > vf2)

where < relation > is one of ’=’, ’<’, ’>’, ’≤’, ’≥’, ’∈’, etc., and < logic connective >
is one of ⇒, ⇔, ∧ (see Example 2.1.). Of course, order relations are used only in the
case of ordered domains (quantitative fields).

Values vf appearing in the edits are called breakpoints, or cut points, for the
domains. They represent the logical watershed between values of the domain. Such
particular values will be indicated with bjf . All the breakpoints bjf can be automati-
cally detected by reading the edits.

We can observe that the expression (f < relation > vf ) represents a set of values
of the domain Df . This can be a single values df ∈ Df (when the relation is ’=’), or
a sets of values with cardinality > 1, or an interval of numbers. In all the above cases,
anyway, (f < relation > vf ) denotes a subset of domain Df , and, in order to avoid

too many case distinctions, they will all be called subsets Sjf ⊆ Df . We congruently
have

Df =
[
j

Sjf

In order to identify all subsets Sjf , the breakpoints bjf are used to partition domain
Df according to the edits. Some domains can be also very fragmented.

Example 3.3. For the field marital status, by reading an imaginary set of
edits, we have the following breakpoints

b1marital status = single

b2marital status = married

b3marital status = separate

b4marital status = divorced

b5marital status = widow

b6marital status = blank

and, by using the breakpoints and the edits to cut the domain Dmarital status, we have
the subsets

S1marital status = {single}
S2marital status = {married}
S3marital status = {separate}
S4marital status = {divorced}
S5marital status = {widow}
S6marital status = {blank}
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Example 3.4. For the field age, by reading an imaginary set of edits, we have
the following breakpoints

b1age = 0

b2age = 14

b3age = 18

b4age = 26

b5age = 120

b6age = blank

and, by using the breakpoints and the edits to cut the domain Dage, we have the
subsets

S1age = (−∞, 0)
S2age = [0, 14)
S3age = [14, 18)
S4age = {18}
S5age = (18, 26)
S6age = [26, 120]

S7age = (120,+∞)
S8age = {blank}

Note that, for real valued numerical fields, depending on the relations in the edit (’<’,
’>’ ’≤’, ’≥’), subsets are intervals close, open, left close, left open, etc.

3.3 Individuation of equivalent classes of subsets

Depending on the edits, some subsets Saf , S
b
f , . . . can be equivalent. This happens

when, given a value df for a field f , the following alternative cases

df ∈ Saf , df ∈ Sbf , . . .
activate exactly the same edits for every other combination of values for other fields.
This means that, if df is in Saf ∪ Sbf ∪ . . ., changing its value still in Saf ∪ Sbf ∪ . . . can
never change correctness result for any questionnaire. By considering such equivalence
relationship, we introduce equivalence classes for that. The above equivalence class
will be indicated as [Saf ]. Such equivalent subsets, can be identified from the edits as

follows. Given a group of subsets df ∈ Saf , df ∈ Sbf , . . ., if all the edits where they
appear are identical except for < relation > and value di (the two elements which
define the subset of the field f - see edit structure in subsect. 3.2) df ∈ Saf , df ∈ Sbf ,
. . . are equivalent. Equivalence classes can therefore be automatically identified.

Example 3.5. If all the edits where married and separate appear would be

marital status = married ∧ age < 14
meaning: if marital status is married, age must be not less than 14.

marital status = separate ∧ age < 14
meaning: if marital status is separate, age must be not less than 14 (must be
married to be separate).
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the two subsets married and separate would be equivalent. Since, instead, they
also appear in other edits which do not satisfy the above condition, married and
separate are not equivalent. In this case the equivalence condition never holds for
the field marital status, hence we have no equivalent subset in it. Therefore, there
is a different class for every subset.

Example 3.6. On the contrary, for the field age, some subsets are equivalent. In
particular, edits representing the concept out of normal are

(age < 0)
meaning: age cannot be less than 0.

(age > 120)
meaning: age cannot be more than 120.

(age = blank)
meaning: age cannot be blank.

The above subsets does not appear in any other edit, and the above edits are identical
except for< relation > and value di, hence the subsets {(−∞, 0)}, {(120,+∞)}, {blank}
are equivalent and collapse in to the same class. Moreover, also the subsets {18} and
{(18, 26)} results to be equivalent. There are no further equivalent subsets. Alto-
gether, for the field age, we have the classes

C1age = [{blank}] = {(−∞, 0), (120,+∞), blank}
C2age = [[0, 14)] = {[0, 14)}
C3age = [[14, 18)] = {[14, 18)}
C4age = [(18, 26)] = {18, (18, 26)}
C5age = [[26, 120]] = {[26, 120]}

3.4 Definition of logic variables

The logic variables are used to encode the information about which equivalence class
contains the value of every field. This can be done in several ways, and pursuing
different aims1 We choose the following, with the aim to produce an easier CNF
formula. The definition of logical variables is slightly different in the case of qualitative
or quantitative fields.

For every qualitative field with n classes, we use n − 1 logic variables αi corre-
sponding to n− 1 classes. If the qualitative field f has a value belonging to the class
Cjf we put αCj

f
= True. The same holds for the other classes of the field, except for

one, for instance the last one Cnf . When the field f has a value in this last class Cnf ,
we put all variables at False.

Example 3.7. The field marital status is divided in 6 equivalence classes (see
example 3.5). We therefore have 6-1 = 5 logical variables α[single], α[married], α[separate],
α[divorced], α[widow], as shown below.

1h equivalence classes could for instance be encoded by dlog2 he logic variables.
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vmarital status ∈ [single] ⇒


α[single] = True
α[married] = α[separate] =
= α[divorced] = α[widow] = False

vmarital status ∈ [married] ⇒
 α[single] = False

α[married] = True
α[separate] = α[divorced] = α[widow] = False

vmarital status ∈ [separate] ⇒
 α[single] = α[married] = False

α[separate] = True
α[divorced] = α[widow] = False

vmarital status ∈ [divorced] ⇒
 α[single] = α[married] = α[separate] = False

α[divorced] = True
α[widow] = False

vmarital status ∈ [widow] ⇒
 α[single] = α[married] =

= α[separate] = α[divorced] = False
α[widow] = True

vmarital status ∈ [blank] ⇒
½

α[single] = α[married] = α[separate] =
= α[divorced] = α[widow] = False

For every quantitative field with n classes, we use n−1 variables. The difference with
former case is that these variables do not correspond to classes. They correspond
instead to nested intervals, all of them having as initial point the smaller feasible
value for that field, and as final point the identified breakpoints. Externally from
the bigger nested interval it remains the ’out of range’ class. This choice for variable
association results, in our case, in shorter clauses. In fact, in most of edits appear
similar intervals. They can therefore be expressed with one variable instead of more
ones.

If the quantitative field f has a value in one of the nested intervals [a,b] we put
α[a,b] = True. The other variable must be set accordingly, as illustrated below. The
same holds for the other classes of the field, except for one, for instance the last one
Cnf . When the field has a value in the ’out of range’ class, we put all variables at
False.

Example 3.8. The field age is divided in 5 equivalence classes (see example
3.6). We therefore have 5-1 = 4 logical variables α[0,14), α[0,18), α[0,26), α[0,120], as
illustrated below.
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vage ∈ [[0, 14)] ⇒
½

α[0,14) = α[0,18) =
= α[0,26) = α[0,120] = True

vage ∈ [[14, 18)] ⇒
½

α[0,14) = False
α[0,18) = α[0,26) = α[0,120] = True

vage ∈ [[18, 26)] ⇒
½

α[0,14) = α[0,18) = False
α[0,26) = α[0,120] = True

vage ∈ [[26, 120]] ⇒
½

α[0,14) = α[0,18) = α[0,26] = False
α[0,120] = True

vage ∈ [blank] ⇒
½

α[0,14) = α[0,18) =
= α[0,26] = α[0,120] = False

We therefore have the following graphical representation of the nested intervals.

α 0,14

α 0,120

α 0,26

18

+ ∞

0 26 120

- ∞

14

α 0,18

Figure 1: Logic variables used to encode the field age.

3.5 Encoding of edits as clauses

So far, every edit can be encoded in clauses by using the defined variables. Every
expressions (fi < relation > vfi) can in fact be substituted by the corresponding
logical variable, obtaining therefore a sequence of logic variables connected by logic
operators, hence a logic formula.

We are interested in producing clauses which are satisfied by consistent answers.
Being edits the description of the error condition, we now need to negate the obtained
logic formula. This negated logic formula can be then transformed in CNF format,
by following simple syntactical logic rules. The so generated CNF formula is satisfied
by every set of correct questionnaires answers, and are not satisfied by every set of
inconsistent or out of range answer. With the particular edit structure considered,
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every edit produces one and only one clause. However, in a general case, this could
not hold, but the procedure works fine as well.

Example 3.9. Following the above example 3.1, the given edit is

marital status = married ∧ age < 14
By substituting the logical variables, we have the following logic formula

α[married] ∧ α[0,14)
By negating it, and applying De Morgan’s law, we obtain the following clause

¬α[married] ∨ ¬α[0,14)

3.6 Identification of congruency clauses

In addition to information given by edits, there is information which is not contained
in edits, and that a human operator would consider obvious, but which must be
provided to an automatic elaboration. In our case, we need to express that fields
must have one and only one value, and therefore other clauses, named congruency
clauses, need to be added.

By using n− 1 variables for n equivalence classes, there is no need to add clauses
expressing that we must have a value being in at least one class, because it does
not exist a truth assignment for variables that doesn’t verify this. Instead, it must
be expressed that the value for a field must be in only one class. Considering the
case of qualitative fields (such as the example of marital status), we have the n
variables corresponding to the n + 1 disjoint classes. The above condition becomes
that only one variable can be true. This is imposed by adding clauses constituted by
all the possible couples of negated variables. Their number is therefore

¡
n
2

¢
(number

of combination of class 2 of n objects).

Example 3.10. In the case of the qualitative field marital status, we have 5
variables, hence the congruency clauses are

¡
5
2

¢
= 10, as follows:

¬α[single] ∨ ¬α[married]
¬α[single] ∨ ¬α[separate]
¬α[single] ∨ ¬α[divorced]
¬α[single] ∨ ¬α[widow]
¬α[married] ∨ ¬α[separate]
¬α[married] ∨ ¬α[divorced]
¬α[married] ∨ ¬α[widow]
¬α[separate] ∨ ¬α[divorced]
¬α[separate] ∨ ¬α[widow]
¬α[divorced] ∨ ¬α[widow]

Considering now the case of quantitative fields (such as the example of age), we have
n variables corresponding to n nested subsets. As observed above, we can have either
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the case of a quantitative field divided into nested intervals of reals, or the case of
a quantitative field divided into nested sets of integer numbers. We will discuss the
procedure speaking about nested intervals, but, of course, the case of nested sets of
integers is completely analogous.

The congruency condition becomes that, if a variable α[a1,b1], corresponding to
an interval [a1, b1], is True, also all the variables α[a2,b2],α[a3,b3], . . . , corresponding
to all the intervals [a2, b2], [a3, b3], . . . , containing [a1, b1], must be True. The above
condition is imposed by adding (n− 1) + (n− 2) + . . .+ 1 =

¡
n
2

¢
clauses expressing

α[a1,b1] ⇒ α[a2,b2],α[a1,b1] ⇒ α[a3,b3], . . . ,α[a2,b2] ⇒ α[a3,b3], . . . ,

Converting in CNF by applying elementary logic rules (αa ⇒ αb is equivalent to
¬αa ∨ αb), we obtain

¬α[a1,b1] ∨ α[a2,b2],¬α[a1,b1] ∨ α[a3,b3], . . . ,¬α[a2,b2] ∨ α[a3,b3], . . . ,

Example 3.11. In the case of the quantitative field age, we have 4 variables
corresponding to 4 nested subsets, hence the congruency clauses are

¡
4
2

¢
= 6, as

follows:
¬α[0,14) ∨ α[0,18)
¬α[0,14) ∨ α[0,26)
¬α[0,14) ∨ α[0,120]
¬α[0,18) ∨ α[0,26)
¬α[0,18) ∨ α[0,120]
¬α[0,26) ∨ α[0,120]

So far, given the set of edits, we have a set of m clauses, and, given the set of
answers to a questionnaire, we have a truth assignment for the n logical variables. By
construction, a record which does not activate any edit, will satisfy all the clauses,
and a record which activates some edits will not satisfy the corresponding clauses. We
therefore have that the truth assignment given by a record must satisfy all the clauses
to be declared correct. We will hence consider the conjunction of all the clauses, that
is a CNF formula E , and say, briefly, that the questionnaire Q must satisfy E to be
declared correct.

4 Edits Validation

As told, edits must be free from inconsistency (i.e. edits must not be in contradiction
each other), and, preferably, from redundancy (i.e. do not contain edit which are
logically implied from other edits). The test for contradictions and redundancies is
very hard for a human operator, and impossible above a certain number of edits. On
the other hand, when such test is automatically performed, it historically turns out
to be very computationally demanding.

A diffuse approach follows the so-called ’Fellegi-Holt’ methodology [11]. This con-
sists in checking for contradiction and redundancy by generating all the (new) edits
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which are implied by the given edits. The generation of all implied edits allows to
check if the given edits imply some hidden rule that should not hold. Unfortunately,
but predictably, the number of implied edits is exponential in the number of given
edits. This is the main reason for which this methodology, although theoretically irre-
proachable, is recently recognized to be not applicable for many real-world problems.

Edit representation by means of first-order logic was already proposed, for in-
stance in [4]. This allows a formal and convenient description of the edit and the
operations. However, something analogous to the generation of all implied edits must
be performed in this case also. The computational complexity of the problem remains
exponential.

Being our proposal to perform edit validation in the case of real world problems,
we must get rid of the generation of all implied edits. By means of a propositional
logic representation, the problem of checking for inconsistency and redundancy can
be formalized as follows.

4.1 Complete Inconsistency in the Set of Edits

When every possible set of answers to the questionnaire is declared incorrect, we have
the situation called complete inconsistency of the set of edits. In fact, reminding that
edits describe the inconsistent situation, let us consider the following example.

Example 4.1. The following is a situation of Complete Inconsistency. This is, of
course, a very simple and evident one. More complex ones, involving dozens of edits,
are not so easily visible. Below every edit its meaning is explained.

seaside house = no

meaning: everybody must have a seaside house.

mountain house = no

meaning: everybody must have a mountain house.

(seaside house = yes) ∧ (mountain house = yes)
meaning: it is not allowed to have both seaside and mountain house.

Using these edits, every questionnaire fails the check, because it cannot exist any set
of answers which appear consistent. Edits are always activated.

In a large set of edits, or in a phase of edits updating performed by people different
from the original edit writers, the situation of complete inconsistency may occur.

Claim 4.1. By encoding edits in clauses, complete inconsistency correspond to a
CNF formula that cannot be satisfied, namely an unsatisfiable formula.

Complete inconsistency can therefore be detected by checking the satisfiability of the
whole CNF formula.
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Moreover, when having a complete inconsistency and in order to restore consis-
tency, it would be very useful to know which are the inconsistent edits. This corre-
sponds to selecting which part of the unsatisfiable CNF cause the unsolvability, i.e. a
minimal unsatisfiable subformula (MUS) [7, 12, 18]. This could be done by means of
the used SAT solver, which, in the case of unsatisfiable instances, is able to select a
subset of clauses which are still unsatisfiable, and thus causes the unsatisfiability of
the whole instance [7]. Therefore, the inconsistent edits are the ones corresponding
to such clauses, and should be changed (by the human adviser who writes the edits,
of course). The usefulness of the individuation of such inconsistent subset of edits is
easily understandable when thinking of the prospect of checking, for instance, a dozen
of edits instead of one thousand.

4.2 Partial Inconsistency in the Set of Edits

More insidious because less easy to detect without an automatic procedure in a large
set of edits is the situation of partial inconsistency of the set of edits. This happens
when some questionnaires, which are correct, are declared erroneous, only due to a
particular value v†f of a single field f . In the intentions of the edit writer, v†f was a
feasible value for the field f . Due to an unfortunate edit combination, however, there
is an hidden and unwanted implied edit which forbids the value v†f for the field f .

v†f will be called a sentence value. When a correct questionnaire contains a sentence
value, it is (erroneously) declared incorrect, due to edit’s fault. For questionnaires
not containing sentence values, partial inconsistency does not cause any problem. Let
us consider indeed the following example.

Example 4.2. The following is a situation of partial inconsistency. Below every
edit its meaning is explained.

(annual income ≥ 1000) ⇒ (seaside house = no)
meaning: if annual income is greater then or equal to 1000, then the subject must

have a seaside house.

(annual income ≥ 2000) ⇒ (mountain house = no)
meaning: if annual income is greater then or equal to 2000, then the subject must

have a mountain house.

(seaside house = yes) ∧ (mountain house = yes)
meaning: it is not allowed to have both seaside and mountain house.

Using the above edits, every questionnaires where the subject has an annual income
≥ 2000 is declared erroneous, even if it should not. In fact, that answer necessarily
activates the edits. Note that, for annual income < 2000, this partial inconsistence
does not show any effect, and error detection proceeds in the correct way. The value
2000, (and any other greater value) is a sentence value for the field annual income.

We can have more than one sentence value v†f forbidden by the same unwanted implied
edit. The set of all values forbidden by an unwanted implied edit is in fact constituted
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by the subset Sjf containing v†f , together with all other subsets belonging to the same
equivalence class (see sec. 3). The logical variable corresponding to the equivalence

class [Sjf ] will be called sentence variable α†f for the field f . The set of all the values

forbidden by one unwanted implied edit will be called sentence set S†f .

S†f =
[

k: Sk
f
∈[Sj

f
], v†

f
∈Sj

f

Skf

We will therefore say that we have partial inconsistency with regard to the set S†f for

the field f , or, equivalently, with regard to the variable α†f for the field f . Note that
we can have more unwanted implied edits forbidding more variables of the same field.

In case of partial inconsistency, the CNF formula obtained from the edits is satis-
fiable. However, if for field f we have a sentence value, this corresponds to fixing the
sentence variable α†f to True.

Claim 4.2. If we fix α†f to True, and remove, as standard, satisfied clauses and
all negated occurrence of that variable, the resulting formula becomes unsatisfiable.

Basing on the above result, partial inconsistency with regard to any single variable
αk of the CNF formula can be detected by checking the satisfiability of all the CNF
formulae obtained by independently fixing αk = True, for k = 1, . . . , n.

Partial inconsistency with respect to a single variable αk, will be called first-level
partial inconsistency. Partial inconsistency with respect to a couple of variables αk
and αh, will be called second-level partial inconsistency, and so on. We don’t check
all levels, otherwise we could not get rid from the exponential complexity that affects
other procedures. What we do is to check all first-level partial inconsistencies, and
provide a tool that allows to check, if desired, higher-level partial inconsistencies.
Note that neither ’Fellegi-Holt’ methods check such partial inconsistencies, since they
do dot lead to a complete contradiction when deriving all implied edits, and there-
fore are not automatically signaled. With ’Fellegi-Holt’ methods, in fact, they could
only be found by a (hypothetic) human inspector which examines every implied edit
generated.

Moreover, in order to restore consistency, the used SAT solver is still able to select
a subset of clauses which are unsatisfiable, and thus causes the situation of partial
inconsistency. Individuation of inconsistent edits can therefore be carried out also in
the case of partial inconsistency.

4.3 Redundancy in the set of edits

Some edits could be logically implied by others, being therefore redundant. It would
be obviously preferable if we could remove them, because decreasing the number of
edits while maintaining the same power of inconsistency detection can simplify the
whole process and make it less error prone.

16



Example 4.3. The following is a (very simplified) situation of edit redundancy.
Below every edit its meaning is explained.

(role = head of the house) ∧ (annual income < 100)
meaning: head of the house must have an annual income greater then or equal to 100.

annual income < 100
meaning: everybody must have an annual income greater then or equal to 100.

The first edit is clearly redundant.

A SAT formulation is generally used to solve the problem of logical implication, i.e.,
given a set of statements S called axioms, to decide whether another statement s
logically derives from them, in symbols S ⇒ s. Representing statements S and s with
clauses, we have S ⇒ s if and only if S ∪ ¬s is an unsatisfiable formula [17, 19]. In
our case this means:

Claim 4.3. The clausal representation of an edit ej is implied by the clausal
representation of a set of edits E if and only if the CNF formula obtained by E ∪¬ej
is unsatisfiable.

It can be consequently checked if an edit is redundant by removing its clausal repre-
sentation ej from the CNF formula, by adding its negation ¬ej to the formula, and
by testing if the resulting formula is unsatisfiable. The redundancy of every edit can
be checked by independently applying to each one of them the above operation

5 Individuation of Erroneous Records

Once we have a valid set of edit rules, they are used to detect erroneous records, in our
case questionnaires. A correct questionnaire will be indicated with Qr (right) and an
erroneous one with Qw (wrong). By using the propositional logic representation, this
trivially becomes the problem of checking if the truth assignment corresponding to
each questionnaire Q satisfies the CNF formula E obtained from the set of edits plus
the congruency clauses. This operation can be performed with an extremely small
computational effort. It results therefore suitable to check even a very large number
of questionnaires.

6 The Problem of Imputation

After detection of erroneous records, if information collecting has no cost, we could
just cancel erroneous records and collect new information until we have enough correct
records. Since usually information collecting has a cost, we would like to use also the
correct part of information contained in the erroneous records. This means changing
the erroneous records in order to try to restore the unknown correct values. Such
operation is called imputation.
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We will call original data the unknown data that we would have if we had no
errors, and original frequency distributions the unknown frequency distributions that
we would have if we had no errors. We will correspondingly call original questionnaire
Qo the questionnaire that we would have if we had no errors.

In our case, therefore, given an erroneous questionnaire Qw, the imputation pro-
cess consists in changing some of his values in order to obtain a corrected questionnaire
Qc which satisfies the formula E .

Imputation should be done by keeping as much as possible the correct information
contained in erroneous data. Two general principles should be followed [11]:

• To apply the minimum changes to erroneous data.

• To modify as less as possible the marginal and joint original frequency distribu-
tion of the data.

The above principles frequently clash. We give an example to clarify this point.

Example 6.1. Consider this case of error: someone whose age is 70 and marital
status is married. The original questionnaire would be

Qo = { ... age = 70, ... marital status = married, ... }

However, the subject forgets to write the zero of 70 and writes 7. The questionnaire
we actually have is

Qw = { ... age = 7, ... marital status = married, ... }

Such record is immediately detected as erroneous, since we have an edit which says
’if marital status is married, age must be ≥ 14’. Suppose that, in virtue of some
procedure (presented below), we know that the errors is in the field age. We therefore
want to correct the value of age. The point is how to correct that. Imagine in fact
that we have many records which are in the above situation, in the sense that their
original values for age were any value above 14, but the erroneous values we have on
the questionnaire are all below 14. If we just try to correct age by changing it as less
as possible, we put all of such values at 14, as follows.

Qc = { ... age = 14, ... marital status = married, ... }

The statistical distribution of the original age would therefore be remarkably altered,
by having a wrong peak in 14. Note that, even if we try to correct age by choos-
ing a random value above 14 which has the same frequency distribution of the age
of married people (distribution obtained from the correct questionnaires) we could
alterate the joint frequency distribution of the field age with respect to other fields.
To continue the example, imagine that our subject (who is 70 years old), has, for the
field work, the value retired. Imagine that the random value used to correct age is
50 (quite plausible). We have:
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Qc ={ ... age = 50, ... marital status = married, ... work = retired}

We can observe that the original (unknown) joint frequency distribution of the two
fields age and work is altered. The same could happen for the other original joint
frequency distributions.

There are two main approaches to the above problem of imputation: the deterministic
and the probabilistic one. Such approaches can sometimes be combined. Given an
erroneous record, a deterministic imputation reconstruct the record with a determinis-
tic procedure, renouncing to keep the original unknown joint frequency distributions.
Note that errors can be stochastic or systematic. Stochastic errors are randomly intro-
duced, and can therefore be unpredictable and have in general low or no correlation.
Systematic errors consists in a repetition of the same error. This can be, for instance,
due to some structural defect in the questionnaire. Deterministic methods are valid
in the case of systematic errors, being in fact a systematic correction. Determinis-
tic imputation just require a priori decisions, and therefore do not present specific
computational difficulties.

A probabilistic imputation, on the contrary, for every erroneous record, tries to
correct it by choosing new values which are not predetermined. The same erroneous
records can therefore be corrected in more than one way. Such methods are generally
preferred in the case of stochastic errors, because they assure a more uniform data
correction, and can salvage the original frequency distributions. The drawback of
probabilistic procedures usually is their computational burden.

6.1 Error Localization

A first problem arising when a questionnaire is declared erroneous, is to locate the
error, namely to understand which are the erroneous fields. We could assume that
the erroneous fields are the smallest set of fields that, if changed, permit to restore
consistency, in the sense of not activating the edits anymore. This assumption is
based on the fact that, when error is something unintentional, the more likely event
is that errors are the smaller number. This is coherent with the principle of minimum
change. In addiction to the above, one can argue that some fields can be more reliable
than others. This means that the probability they are erroneous is lower. What is
generally done is to give, for every field fi, a measure ri ∈ IR+ of the reliability, which
corresponds to a “preference” in keeping unchanged the value of field fi. We define
the total cost of a correction as the sum of the reliabilities ri of the fields to modify
fwi . By calling W the set of the fwi , the cost of such correction is

c (W ) =
X

i:fwi ∈W
ci

Therefore, the problem of error localization is the following. Given the erroneous
questionnaire Qw and the CNF formula E to be satisfied, we want to find a set W of
fields fwi such that:
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• The corrected questionnaire Qc satisfying E can be obtained from the erroneous
one Qw by changing (only and all) the values of the fwi ∈ W .

• The total cost of required changes c(W ) is minimum.

We can in fact have more than one set of fields whose imputation can restore consis-
tency, and we are interested in the one which changes as few as possible Qw.

As for the values to put in such fields, two approaches are generally considered.
One is to generate the imputed values by means of some (stochastic) function, al-
though this could change the original unknown frequency distribution of the data
(see example 6.1). The second is to use a donor questionnaire Qd.

6.2 Imputation through a Donor

A donor questionnaire Qd is a correct questionnaire which, according to some dis-
tance function d(Qw, Qd) ∈ IR+, is the nearest one to the erroneous questionnaire
Qw we want to correct. Therefore, it represents a subject which has very similar
characteristics. Given Qw and Qd, we simply copy the values of the fields fwi that we
need to change from the donor Qd to the erroneous Qw. This procedure is generally
recognized to cause a low alteration of the original frequency distributions.

Example 6.2. Consider this case of the error in example 6.1: someone whose age
is 70 and marital status is married. The erroneous questionnaire we have is

Qw = { ... age = 7, ... marital status = married, ... }

Assume that the field marital status has a cost cmarital status = 8, and the field
age has a cost cage = 3. This means that the answer to the field marital status is
considered more reliable than the answer to the field age. We find that the set W of
minimum cost is just the field {age}. We therefore want to perform the imputation
of the field age.

Assume that, if we consider the values of all the fields ofQw, the subject appears to
be an elderly man. Let therefore assume that, by searching for a correct questionnaire
at minimum distance (considering all fields) from Qw we find another elderly man:

Qd = { ... age = 72, ... }

We can now proceed with the imputation of the field age from the donor. This
restores consistency. We obtain

Qc ={ ... age = 72, ... marital status = married, ... }

Note that, in this case, the corrected questionnaire Qc is very similar to the original
one Qo. This does not happen by chance, but is due to the mechanism of imputation
trough a donor.
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However, two problems arise from the use of a donor. The first is that, if we have
not enough correct questionnaires to find a donor which is close to Qw, the imputed
values can be not so similar to the original ones. The second is that, by using a donor,
we are not guaranteed that the set of erroneous fields of minimum cost W is enough
to restore consistency of Qw. In fact, W is that set of fields at minimum cost that
can be changed to restore consistency, but the use of a donor does not let to change
such fields as much as we like. We could need to take more fields from the donor, or
we could need to take the fields of another set W 0 6= W , before restoring consistency.
However, we have the guarantee that, since the donor is a correct questionnaire, there
exists in Qd at least one set of fields whose values are able to restore consistency of
Qw. The second problem is related to the first, since, having a very numerous set of
correct questionnaires, the case when we need to copy from the donor a set of fields
different from W before restoring consistency is rare. Moreover, the number of fields
we could need to add in this case is low. Consider the following (very rough) example.

Example 6.3. We have an erroneous questionnaire Qw

Qw = { ... age = 17, ... car = no, ... city of residence = aaa, ...
..., city of work = bbb, ... time to go to work = 20, ... }

where the set of erroneous fields of minimum cost is { age, car }, with a total cost of
5.5. Imagine we could restore consistency only if, for these two fields, we have age≥
18 and car = yes. Searching for a donor, however, we find Qd such that

Qw = { ... age = 16, ... car = yes, ... city of residence = aaa, ...
... city of work = aaa, ... time to go to work = 20, ... }

If we proceed with imputation of the two selected fields { age, car }, we do not restore
consistency at all. We need to choose a different set of fields. In this case, imagine
that the imputation of the set of fields { age, city of work }, with a total cost of
c = 6, restores consistency. By taking them from the donor, we obtain:

Qw = { ... age = 17, car = yes, city of residence = aaa, ...
... city of work = aaa, ... time to go to work = 20, ... }

Therefore, the problem of imputation trough a donor is the following. Given the
erroneous questionnaire Qw, the donor questionnaire Qd, and the CNF formula E to
be satisfied, we want to find a set D of fields fdi such that:

• The corrected questionnaire Qc satisfying E can be obtained from the erroneous
one Qw by copying from the donor Qd (only and all) the values of the fdi ∈ D.

• The total cost of the correction c(D) is minimum.

In this case also we can have more than one set of fields whose imputation can restore
consistency, and we are interested in the one which changes as few as possible Qw.
Due to the motivations noted above, we have that c(W ) ≤ c(D). Variants to the
above procedure are possible (the number of donors, how to choose a donor), but the
spirit of the imputation trough a donor remains the same.
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7 A Set Covering Formulation

We can observe that, in both the cases of the use of an imputation function or of the
use of a donor, we actually want to find a set of changes of minimum cost such as we
can restore consistency, i.e. satisfy the CNF formula E . The above problem can be
modeled as a weighted set covering problem [21].

Given a ground set S of n elements si, and a collection A of m subsets Aj of S
(for example, the collection may consists of all subsets of size k ≤ n), the set covering
problem is the problem of taking a set of elements si of minimum cardinality such
as we have at least one element for every Aj . A little more general problem is the
following. Given a ground set S of n elements si, each one with a cost ci ∈ IR+, and
a collection A of m sets Aj of elements of S, the weighted set covering problem is the
problem of taking the set of elements si of minimum total weight such as we have at
least one element for every Aj . Note that the first problem is a special case of the
second when all the costs are 1.

Let aj be the incidence vector of Aj , i.e. a vector in {0, 1}n whose i-th component

aji is 1 if si ∈ Aj , and 0 if si 6∈ Aj . Consider a vector of variables x ∈ {0, 1}n which is
the incidence vector of the set of the elements si we take. We can give the following
mathematical model for the above problems.

min

nX
i=1

cixi

s. t.

nX
i=1

ajixi ≥ 1 j = 1 . . .m

x ∈ {0, 1}n

(1)

The set covering problem is a classical combinatorial optimization problem, with
binary variables which assume values in {0,1}. It is of great relevance for modeling
and solving a variety of problems arising form many practical fields. It is known
to be NP-complete [13]. Set covering formulations are used, for instance, in the
fields of telecommunications, transportation, facility location, crew scheduling, and,
in general, when the problem has the structure of a set of something that must be
covered.

In order to work in the field of binary optimization, we now transform the logic
variables αi taking values in {True, False} into binary variables xi taking values in
{0,1}. The difference is only formal, and the conversion is straightforward. While the
operations defined on the logical variables where {∧,∨, . . .}, the operations defined
on the binary variables are {+,−, . . .} In particular, a positive literal αi corresponds
to a binary variable xi, and a negative literal ¬αi corresponds to a negated binary
variable x̄i. Note that x̄i and xi must have opposite values, just like ¬αi and αi.

A set of answers to a questionnaire, which corresponded to a truth assignment
in {True, False}n, will now correspond to a binary vector in {0, 1}n. The following
propositional clause cj

(αi ∨ ... ∨ αj ∨ ¬αk ∨ ... ∨ ¬αn)
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will now correspond to the following linear inequality, by defining the set Aπ of the
logical variables which appear positive in cj , and the set Aν of the logical variables
which appear negative in cj , and the corresponding incidence vectors aπ and aν

nX
i=1

aπi xi +
nX
i=1

aνi x̄i ≥ 1

For each clause we have an inequality of the above type. If we write all of them, we
obtain that the logic formula E that the truth assignment must satisfy

(αi1 ∨ ... ∨ αj1 ∨ ¬αk1 ∨ ... ∨ ¬αn1) ∧ . . . ∧ (αim ∨ ... ∨ αjm ∨ ¬αkm ∨ ... ∨ ¬αnm)

corresponds now to the following system of linear inequalities that the binary vector
must satisfy. aπ1,1 ... aπ1,n

...
aπm,1 ... aπm,n


 x1

...
xn

+

 aν1,1 ... aν1,n
...

aνm,1 ... aνm,n


 x̄1

...
x̄n

 ≥
 1

...
1



Example 7.1. Suppose that the truth assignment corresponding to the (correct)
questionnaire Q is

{α1 = False,α2 = False,α3 = True}
and that the logic formula E used to detect erroneous questionnaires is

(¬α1 ∨ α2 ∨ ¬α3) ∧ (¬α1 ∨ ¬α2) ∧ (α2 ∨ α3)

The binary vector corresponding to the questionnaire Q is

{x1 = 0, x2 = 0, x3 = 1}

and the system of linear inequalities corresponding to E is 0 1 0
0 0 0
0 1 1

 x1
x2
x3

+

 1 0 1
1 1 0
0 0 0

 x̄1
x̄2
x̄3

 ≥
 1

1
1



Moreover, in order to take into account the reliability of every field, we estimate a
vector of n costs {c1, . . . , cn} corresponding to the variables {α1, . . . ,αn}. We pay ci
when we change αi. Note that, since every field corresponds to more variables, such
costs are not directly the reliability of a field. On the other hand, an estimation of
an individual cost for every variable allows more subtile evaluations.

We can now model the imputation problems as follows.
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7.1 Error Localization

In the case of error localization, we have

• The binary vector e = {e1, . . . , en} ∈ {0, 1}n corresponding to the erroneous
questionnaire Qw.

• The binary variables x = {x1, . . . , xn} ∈ {0, 1}n and their complements x̄ =
{x̄1, . . . , x̄n} ∈ {0, 1}n, with the coupling constraints xi + x̄i = 1. The variables
x represent the truth assignment corresponding to the corrected questionnaire
Qc that we want to find.

• The system of linear inequalities Aπx+Aν x̄ ≥ 1, with Aπ, Aν ∈ {0, 1}m×n, that
e does not satisfy. We know that such system has binary solutions, since E is
satisfiable and has more than one solution.

• The vector c0 = {c1, . . . , cn} ∈ IRn+ of costs that we pay for changing e. We pay
ci for changing ei.

We introduce furthermore a vector of binary variables y = {y1, . . . , yn} ∈ {0, 1}n
representing the changes we introduce in e. We have

yi =

½
1 if we change ei
0 if we keep ei

According to the principle of the minimum change, we want to change the erroneous
questionnaire Qw minimizing the total cost of the changes. This can be expressed as

min
yi∈{0,1}

nX
i=1

ciyi = min
y∈{0,1}n

c0y (2)

We want a corrected questionnaire Qc which satisfies the system of inequalities

Aπx+Aν x̄ ≥ 1 (3)

A key issue is that there is a relation between variables y and x (and consequently
x̄). This depends on the values of e, as follows:

yi =

½
xi (= 1− x̄i) if ei = 0
1− xi (= x̄i) if ei = 1

(4)

In fact, when ei = 0, to keep it unchanged means to put xi = 0. Since we do not
change, yi = 0. On the contrary, to change it means to put xi = 1. Since we change,
yi = 1. Altogether, yi = xi.

When, instead, ei = 1, to keep it unchanged means to put xi = 1. Since we do not
change, yi = 0. On the contrary, to change it means to put xi = 0. Since we change,
yi = 1. Altogether, yi = 1− xi.
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By using the above result, we can express the problem of error localization with
the following formulation. Our objective function (2) becomes

min
xi,x̄i∈{0,1}

nX
i=1

(1− ei)cixi +

nX
i=1

eicix̄i (5)

Subject to the following constraints

Aπx+Aν x̄ ≥ 1
xi + x̄i = 1
x, x̄ ∈ {0, 1}n

We will call satisfiability constraints the first kind of constraints, deriving in fact from
the propositional satisfiability problem. We will call coupling constraints the second
kind of constraint. The third kind are the binary constraints over the variables. The
above formulation is a set covering problem, as defined in (1).

7.2 Imputation through a Donor

The case of imputation through a donor is very similar. We have

• The binary vector e = {e1, . . . , en} ∈ {0, 1}n corresponding to the erroneous
questionnaire Qw.

• The binary vector d = {d1, . . . , dn} ∈ {0, 1}n corresponding to the donor ques-
tionnaire Qd.

• The binary variables x = {x1, . . . , xn} ∈ {0, 1}n and their complements x̄ =
{x̄1, . . . , x̄n} ∈ {0, 1}n, with the coupling constraints xi+ x̄i = 0. x corresponds
to the corrected questionnaire Qc that we want to find.

• The system of linear inequalities Aπx+Aν x̄ ≥ 1, with Aπ, Aν ∈ {0, 1}m×n, that
e does not satisfy. We know that such system has binary solutions, since E is
satisfiable and has more than one solution.

• The vector c0 = {c1, . . . , cn} ∈ IRn+ of costs that we pay for changing e. We pay
ci for changing ei.

We use, as before, a vector of binary variables y = {y1, . . . , yn} ∈ {0, 1}n representing
the elements that we copy from d to e. We have

yi =

½
1 if we copy di in ei
0 if we keep ei

According to the principle of the minimum change, we want to change the erroneous
questionnaire Qw minimizing the total cost of the changes. This can be expressed as

min
yi∈{0,1}

nX
i=1

ciyi = min
y∈{0,1}n

c0y (6)
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We want a corrected questionnaire Qc which satisfies the system of inequalities

Aπx+Aν x̄ ≥ 1 (7)

In this case also, there is a relation between variables y and x (and consequently x̄).
This depends on the values of e and d, as follows:

yi =


xi (= 1− x̄i) if ei = 0 and di = 1
1− xi (= x̄i) if ei = 1 and di = 0
0 if ei = di

(8)

In fact, when ei = 0 and di = 1, not to copy the element means to put xi = 0. Since
we do not change, yi = 0. On the contrary, to copy the element means to put xi = 1.
Since we change, yi = 1. Altogether, yi = xi.

When, instead, ei = 1 and di = 0, not to copy the element means to put xi = 1.
Since we do not change, yi = 0. On the contrary, to copy the element means to put
xi = 0. Since we change, yi = 1. Altogether, yi = 1− xi.

Finally, when ei = di, we have no gain from copying the element, and therefore
we do not change. Altogether, yi = 0.

By using the above result, we can express the problem of imputation through a
donor with the following formulation. Our objective function (2) becomes

min
xi,x̄i∈{0,1}

nX
i=1

(1− ei)dicixi +

nX
i=1

ei(1− di)cix̄i (9)

Subject to the following constraints

Aπx+Aν x̄ ≥ 1
xi + x̄i = 1
x, x̄ ∈ {0, 1}n

Similarly with the former case, we will call satisfiability constraints the first kind of
constraints, deriving in fact from the propositional satisfiability problem. We will
call coupling constraints the second kind of constraint. The third kind are the binary
constraints over the variables. Also the above formulation is a set covering problem,
as defined in (1).

The above problems are therefore solved with the volume algorithm [2, 3], which
is a recently proposed and very effective combinatorial optimization algorithm.

8 Implementation

We first implemented a series of procedures in order perform the automatic conversion
of the set of edits into a CNF formula. After that, in virtue of modeling our problems
as classical optimization problems, we could take advantage of the huge amount of
research done in the fields of satisfiability and set covering solvers.

The satisfiability problems are solved by means of an enumeration procedure called
Adaptive Core Search (ACS)[7]. Such solver, in fact, turns out to be a very effective
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one, as proved in [6]. Moreover, in the case of unsatisfiable instances, ACS is able
to select a subset of clauses which are still unsatisfiable, and thus cause the unsatis-
fiability. This is a key feature in our case, since, in the cases of inconsistencies, we
need to correct them, and this is possible only when the set of ’culprit’ edits can be
located.

All the edits validation process was implemented to run sequentially, and interac-
tively asking, for every inconsistence of redundancy found, whether stop the process
and let the edit-writer mend the set of edit, or ignore it and continue.

The set covering problems are then solved by implementing the Volume Algorithm
[2, 3]. This very effective procedure recently developed by Barahona is an extension
of the subgradient algorithm, with the key feature is that is able to produce primal as
well dual solutions. This gives a fast method for producing approximated solutions
for large scale linear programs.

We added a simple heuristic in order to obtain an integer solution to our set cov-
ering problem, together with a bound allowing to verify the quality of such solution.
Such heuristic consists in a rounding of the fractionary solution. Rounding is deter-
ministic (and just cuts at 1/2) for some fractionary values, while being probabilistic
for particular combinations of fractionary values. The choice of the Volume Algo-
rithm made possible to solve problems whose size is not solvable by a commercial
Branch-and-Bound solver (Xpress).

9 Results

We performed the process of edits validation and data imputation in the case of a
Census of Population. The set of edits are kindly provided by the Italian National
Statistic Institute (ISTAT). In the course of this work, we actually did several tests, by
considering different sets of edits. They ranged from 100 to 400 edits. Such procedure
were considered to be quite representative of how a real census proceeds.

All the described procedure were implemented in C++ and tested on a Pentium
II 450MHz PC under MS Windows Operating System.

In this census, the data of every family were collected by using a single question-
naire. Individuals were identified by number, and edits were originally written with
this structure. Edits have been rewritten identifying individuals by roles, which are:
head of the family, consort, father of head, mother of head, brother/sister
of head, son, additional son, father in law, mother in law, daughter in law,
son in law, grandchild. This was done by taking obviously care of maintaining the
exact meaning of the original edits. This choice produces a more compact set of edits,
while its congruency and redundancy properties remain the same.

Being a questionnaire for an entire family, we can have similar edits repeated for
every member of the family. Edit replication, called explosion, is the first automati-
cally performed step.

It is then applied the procedure of automatic conversion of edits into clauses. The
implemented software takes in input a file containing the set of edits, a file containing
a description of the fields, a file containing lists of all feasible values of qualitative
fields, and a file containing the list of family roles. The procedure identifies logical

27



variables, according to outlined procedure, and gives in output a file listing the used
logical variables, with their meaning, and the CNF formula which encodes the set of
edits. The generation of the logic formula is not a costing operation.

For the problem we deal with, resulting formulas range from 315 variables and 650
clauses to 450 variables and 1100 clauses. Since this kind of problems are solved quite
easily, in order to test the limits of the procedure, we moreover considered artificially
generated satisfiability instances of bigger size. They ranged from 1000 variables and
5000 clauses to 15000 variables and 75000 clauses.

9.1 Edit Validation

Our algorithm begins with solving the satisfiability problem for the CNF formula,
in order to detect complete inconsistency for the set of edits. After this, in order to
detect all 1-level partial inconsistency, the procedure goes ahead fixing in turn every
variable to True and then all the variables of every field to False, and solving at
every step the resulting SAT instance.

The test for redundancies is then made by negating in turn every clauses, and
solving at every step the resulting SAT instance.

Hence, for every instance with n variables and m clauses, the implemented algo-
rithm solves in cascade about 1 + n+ n/10 +m satisfiability problems of non trivial
size. Although such problems do not reveal to be structurally hard, the computational
burden is substantial. Therefore, there is the need of an efficient SAT solver. We used
ACS, a recently proposed and very efficient SAT solver, which uses an enumeration
scheme with a new adaptive technique [7]. In the following tables we report number
of variables (n) and number of clauses (m) of the propositional CNF formula, the
number of problem we had to solve (# of problems), and total time for solving all of
them (time).

In table 1 we report results on formulas which are the encoding of the real census
edits. In table 2 we report results on artificially generated formulas.

n m # of problems time

315 650 975 0.99
350 710 1090 1.35
380 806 1219 1.72
402 884 1321 2.21
425 960 1428 2.52
450 1103 1599 3.24

Table 1: Results of the edit validation procedure on real sets of edits .

Our solver is able, in the case of an unsatisfiable instance, of providing a set of clauses
which cause the unsolvability, in order to understand were is the inconsistency. In the
analyzed set of real edits, which were supposed to be error free, a partial inconsistency
was found, that was due to one of the edit concerning divorced people, as explained
below. Married people must be at least 14 years old, and a divorce procedure takes at
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least four years. It results that divorced people must be at least 18 years old. There
was an edit representing this, and it was erroneously written

(marital status ∈ {single, married, separate, widow}) ∧ (age < 18)

The correct edit should have been the following.

(marital status = divorced) ∧ (age < 18)

Such problem could of course cause errors during the phase of individuation of erro-
neous records.

By checking for redundancy, several clauses resulted redundant, hence the corre-
sponding edits are already implied by the rest of the edits.

Further tests, performed after deliberately introduction of inconsistency or redun-
dancy in the set of edits, lead in the totality of the cases to their detection.

n m # of problems time

1000 5000 6101 15
3000 15000 18301 415
5000 25000 30501 1908
8000 40000 48801 7843
10000 50000 61001 16889
15000 75000 91501 >36000

Table 2: Results of the edit validation procedure on artificially generated sets of edits
.

In the case of artificially generated instances, partial inconsistencies and redundancies
were found. Their description is not significative, being artificially generated prob-
lems. They were used in order to understand which size of problems the proposed
procedure is able to treat.

Afterwards, detection of erroneous questionnaires answers have been performed,
as a trivial task. It proceeds converting the set of answers in values for the logi-
cal variables, and simply testing if such truth assignment satisfies the CNF formula
obtained from the edits.

9.2 Data Imputation

The procedure for data imputation was tested on simulated questionnaires, and by
using the two sets of real edits and the artificially generated ones. We considered both
the problems of error localization and imputation through a donor. For each set of
edits we considered various simulated erroneous answers. In particular, we considered
the percentage of activated edits for the erroneous answer. Since errors are usually a
small part of the answers, we realistically considered small edit activation percentages
(1%, 2%, 3%, etc.). Note that a set of edit corresponding to n logic variables and
m clauses corresponds here to a set covering formulation with 2n variables and m
satisfiability constraints plus n coupling constraints, altogether m+ n.
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We solved the set covering formulation by means of a set covering solver based
on the Volume Algorithm. Moreover, since this is an approximate procedure, we
compared its results with the commercial Branch-and-Bound solver Xpress. In some
cases of high error percentage, the solver based on the Volume Algorithm could not
find a feasible integer solution. In those cases we reported “-”. We report a different
table for each instance, with time and solution value in all the above cases. Problems
of error localization follow.

Time Value
error VA B&B VA B&B

0.5% 0.01 3.18 43.0 43.0
0.9% 0.10 3.18 221.6 221.6
1.3% 0.10 3.45 328.4 328.4
2.4% 0.14 2.86 729.5 729.5
5.0% 0.22 3.50 300.8 300.8

Table 3: Error localization procedure on a real set of edits. The set covering
instance has 400 var. and 1400 const.

Time Value
error VA B&B VA B&B

0.4% 0.04 1.91 58.6 58.6
0.7% 0.10 1.91 108.6 108.6
1.0% 0.11 2.54 140.1 140.1
1.6% 0.16 1.90 506.7 506.7
2.5% 0.20 2.50 1490.1 1490.1
3.5% 0.23 2.98 2330.8 2330.8

Table 4: Error localization procedure on a real set of edits. The set covering
instance has 480 var. and 1880 const.

Time Value
error VA B&B VA B&B

0.7% 0.51 2.44 463.2 463.2
1.5% 0.68 3.02 394.5 394.5
2.1% 0.55 3.32 612.5 612.5
3.6% 0.98 3.73 1254.8 1254.8
6.7% 1.00 4.40 2341.2 2341.2

Table 5: Error localization procedure on a real set of edits. The set covering
instance has 800 var. and 3200 const.

From the above tables, we can observe that real problems are solved efficiently both
by VA and B&B. Surprisingly, VA reaches in all cases the optimal integer solution,
given by the B&B. Times are very small in both cases, and they increase with error
percentage (and, of course, with the size of the problem).

In addition, we tested the procedure on artificially generated instances, corre-
sponding to the artificially generated satisfiability instance considered in the case of
edit validation.
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Time Value
error VA B&B VA B&B

0.4% 0.66 87.90 329.4 329.4
1.0% 1.30 81.88 1010.4 1010.4
1.1% 0.73 97.71 952.9 952.9
1.8% 1.92 109.05 1982.0 1982.0
4.3% 3.65 87.16 5549.8 5549.8

Table 6: Error localization procedure on an artificially generated set of edits. The
set covering instance has 2000 var. and 6000 const.

Time Value
error VA B&B VA B&B

0.5% 11.60 3813.4 1273.7 1273.6
0.8% 4.75 3477.7 2266.1 2266.1
1.0% 5.10 2796.9 3604.3 3604.3
2.1% 4.76 4117.2 6064.2 6064.2
4.0% 11.63 3595.0 1544.7 1544.6

Table 7: Error localization procedure on an artificially generated set of edits. The
set covering instance has 6000 var. and 18000 const.

Time Value
error VA B&B VA B&B

0.5% 8.27 18837.8 2018.1 2018.1
0.7% 10.87 19210.5 3817.1 3817.1
1.3% 11.80 19493.6 6409.2 6409.2
1.7% 28.58 18506.6 9673.7 9673.7
3.0% 41.35 17000.3 21742.5 21742.4

Table 8: Error localization procedure on an artificially generated set of edits. The
set covering instance has 10000 var. and 30000 const.

Time Value
error VA B&B VA B&B

0.4% 9.16 >21600 3058.4 -
0.9% 20.36 >21600 6897.7 -
1.3% 40.64 >21600 11682.9 -
2.0% 66.60 >21600 20113.0 -
4.0% 73.54 >21600 37069.1 -

Table 9: Error localization procedure on an artificially generated set of edits. The
set covering instance has 16000 var. and 48000 const.
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Time Value
error VA B&B VA B&B

0.5% 44.44 >21600 5135.4 -
0.8% 30.61 >21600 8640.5 -
1.3% 31.42 >21600 14466.7 -
2.1% 83.41 >21600 23093.7 -
3.6% 74.64 >21600 39448.2 -

Table 10: Error localization procedure on an artificially generated set of edits. The
set covering instance has 20000 var. and 60000 const.

Time Value
error VA B&B VA B&B

0.4% 35.74 >21600 6754.7 -
0.9% 47.33 >21600 12751.3 -
1.3% 107.97 >21600 20135.4 -
2.0% 94.42 >21600 31063.6 -
4.0% 186.92 >21600 66847.4 -

Table 11: Error localization procedure on an artificially generated set of edits.
The set covering instance has 30000 var. and 90000 const.

From the above tables, we can observe that artificially generated problems of very
big size are all solved by VA, while B&B cannot solve the bigger instance within the
time limit of 6 hours. However, we begin to notice that the solution found by VA is
not optimal, although the difference is numerically negligible.

Further occasional tests with higher error percentage shows that VA does not
increase running time, but the heuristic is not able to find a feasible integer solu-
tion, hence we have no solution, while B&B would reach such solution but in an a
prohibitive amount of time.

In the case of a donor, we considered a simulated donor, which is a correct solution
very similar to the erroneous one. Results both for real and artificially generated sets
of edits follow.

Time Value
error VA B&B VA B&B

0.5% 0.04 0.01 43.4 43.4
0.9% 0.04 0.01 227.5 227.5
1.3% 0.04 0.01 348.7 348.7
2.4% 0.04 0.04 726.6 726.6
5.0% 0.03 0.03 365.8 365.8

Table 12: Imputation through a donor on a real set of edits. The set covering
instance has 400 var. and 1400 const.
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Time Value
error VA B&B VA B&B

0.4% 0.04 0.02 63.6 63.6
0.7% 0.06 0.02 144.7 144.7
1.0% 0.06 0.02 264.5 264.5
1.6% 0.06 0.02 643.5 643.1
2.5% 0.07 0.02 1774.3 1774.1
3.5% 0.06 0.03 2369.9 2369.5

Table 13: Imputation through a donor on a real set of edits. The set covering
instance has 480 var. and 1880 const.

Time Value
error VA B&B VA B&B

0.7% 0.08 0.04 280.1 280.1
1.5% 0.08 0.06 453.5 453.1
2.1% 0.08 0.06 655.4 655.0
3.6% 0.08 0.07 1378.0 1378.0
6.7% 0.10 0.07 2455.1 2455.0

Table 14: Imputation through a donor on a real set of edits. The set covering
instance has 800 var. and 3200 const.

Time Value
error VA B&B VA B&B

0.4% 0.26 0.01 331.2 331.2
1.0% 0.10 0.31 1015.2 1015.1
1.1% 0.04 0.01 952.9 952.9
1.8% 0.08 0.31 1997.1 1997.1
4.3% - 0.20 - 5592.2

Table 15: Imputation through a donor on an artificially generated set of edits.
The set covering instance has 2000 var. and 6000 const.

Time Value
error VA B&B VA B&B

0.5% 0.17 0.30 1291.6 1291.4
0.8% 0.17 0.10 2305.4 2305.4
1.0% 0.70 0.30 3660.1 3660.1
2.1% 0.38 0.30 6124.0 6123.1
4.0% 0.65 0.30 1585.7 1585.0

Table 16: Imputation through a donor on an artificially generated set of edits.
The set covering instance has 6000 var. and 18000 const.
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Time Value
error VA B&B VA B&B

0.5% 1.01 0.6 2120.1 2118.9
0.7% 1.30 0.6 3877.7 3877.2
1.3% 1.40 0.3 6411.7 6411.7
1.7% 1.60 0.6 9690.1 9690.1
3.0% 1.05 0.3 21823.1 21802.4

Table 17: Imputation through a donor on an artificially generated set of edits.
The set covering instance has 10000 var. and 30000 const.

Time Value
error VA B&B VA B&B

0.4% 0.44 0.6 3064.2 3064.2
0.9% 4.59 0.6 6899.7 6899.6
1.3% 0.86 0.8 11702.9 11698.3
2.0% - 0.6 - 19814.5
4.0% - 0.9 - 36496.7

Table 18: Imputation through a donor on an artificially generated set of edits.
The set covering instance has 16000 var. and 48000 const.

Time Value
error VA B&B VA B&B

0.5% 2.85 0.9 5139.1 5139.0
0.8% 3.28 0.9 8688.0 8687.0
1.3% 3.41 0.9 14500.4 14478.5
2.1% 3.82 0.9 23411.7 23072.0
3.6% - 0.9 - 44026.8

Table 19: Imputation through a donor on an artificially generated set of edits.
The set covering instance has 20000 var. and 60000 const.

Time Value
error VA B&B VA B&B

0.4% 3.58 1.27 6788.1 6788.1
0.9% 3.22 1.27 12760.0 12759.5
1.3% 0.97 0.9 20140.1 20140.0
2.0% 2.89 1.27 31258.1 31082.2
4.0% - 1.59 - 67764.94

Table 20: Imputation through a donor on an artificially generated set of edits.
The set covering instance has 30000 var. and 90000 const.

From the above tables, we can observe that all problems are solved is very short times.
B&B is always able to find a solution within seconds. VA, on the other hand, is not
able to find a solution when error increases too much. Moreover, the solution found
by VA is not optimal in several cases, although the difference is very small.

This can be explained by noting that, in the problem of imputation through a
donor, some variables are fixed to the value thy have in the donor. This results in a
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problem with much less variables but with a high error percentage. In this conditions
the preferable solution method is a complete one, such like B&B.

To summarize the results, VA outperform B&B in the case of error localization
in very big instances with a moderate error. On the contrary, in the case of smaller
problems with higher error (not realistic), or in some cases of imputation through a
donor, B&B is more reliable.

10 Conclusions

A binary encoding is the more direct and effective representation both for records and
for the set of edit rules in a process of data collecting. It allows to automatically detect
inconsistencies and redundancies in the set of edit rules. Erroneous records detection
is carried out with an inexpensive procedure. The proposed encoding allows, more-
over, to automatically perform error localization and data imputation. The related
computational problems are overcome by using state-of-the-art solvers. Approached
real problems have been solved in extremely short times. Artificially generated prob-
lems are effectively solved until sizes which are orders-of-magnitude larger than the
above real-world problems. Hence, noteworthily qualitative improvements in a gen-
eral process of data collecting are made possible. The implemented software is tested
in the case of a real Population Census. Edits are kindly provided by the Italian
National Statistic Institute (ISTAT). Results are extremely encouraging.

Acknowledgments. The authors would like to thank Sonia Benzi, Francisco Bara-
hona, Fabiana Birarelli, Carlo Mannino, Alessandra Reale.

References

[1] M. Bankier. Experience with the New Imputation Methodology used in the 1996 Canadian
Census with Extensions for future Census. UN/ECE Work Session on Statistical Data Editing,
Working Paper n.24, Rome, Italy, 2-4 June 1999.

[2] F. Barahona and R. Anbil. The Volume Algorithm: producing primal solutions with a subgra-
dient method. IBM Research Report RC21103, 1998.

[3] F. Barahona and F. Chudak. Near-optimal solutions to large scale facility location problems.
IBM Research Report RC21606, 1999.

[4] G. Barcaroli. Un approccio logico formale al problema del controllo e della correzione dei dati
statistici. Quaderni di Ricerca ISTAT n.9/1993.

[5] E. Boros, P.L. Hammer, T. Ibaraki and A. Kogan. Logical analysis of numerical data. Mathe-
matical Programming, 79:163—190, 1997.

[6] R. Bruni and A. Sassano. CLAS: a Complete Learning Algorithm for Satisfiability. Diparti-
mento di Informatica e Sistemistica, Università di Roma “La Sapienza” , Technical Report
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