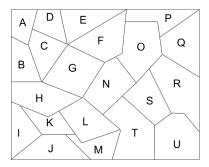
Ricerca Operativa - Prova scritta (I parte) (31 Marzo 2004)

Compito A/I

Esercizio #1 (10 punti)

Il prof. Etabeta è nei guai. Lo svolgimento della prova scritta del suo esame di Teoria delle Invenzioni si svolgerà in un'aula in cui i posti-studenti hanno una disposizione un po' particolare (in figura a ciascuna area corrisponde un posto-studente). Accade perciò che ogni studente malizioso potrebbe copiare le risposte date da un qualsiasi suo collega che occupi un posto a lui adiacente ... a meno che il professore non preveda un certo numero di compiti differenti.

Pertanto si rivolge al suo collega di Ricerca Operativa: quest'ultimo ritiene che perfino gli studenti del suo corso sono in grado di trovare una formulazione (in termini di ottimizzazione combinatoria) al problema del prof. Etabeta.



• Indicare nella tabella seguente: l'insieme V dei vertici del grafo, l'insieme E dei suoi archi, l'insieme universale U, la regione ammissibile \mathcal{F} e la funzione peso c.

ogni $v \in V$ corrisponde a	un posto-studente
$uv \in E$ se e solo se	gli studenti u e v occupano posti adiacenti
l'insieme U è formato da	gli insiemi stabili di $G = (V, E)$ (studenti con il medesimo compito)
$X \in \mathcal{F}$ se e solo se	X è composto da insiemi stabili che coprono V
$\forall x \in U, c(x) \text{ vale}$	1

• Successivamente, formula il problema risultante in termini di programmazione lineare 0-1.

Sia ${\cal S}$ l'insieme di tutti gli insiemi stabili di ${\cal G}$

$$x_s = \begin{cases} 1 & \text{se l'insieme stabile } s \text{ viene prescelto} \\ 0 & \text{altrimenti} \end{cases} \quad \forall s \in S$$

$$\min \sum_{s \in S} x_s$$

$$\sum_{s:v\in S} x_s \ge 1 \qquad \forall v\in V$$

$$x_s \in \{0, 1\} \qquad \forall s \in S$$

• Risolvere il problema mediante l'algoritmo greedy e riportare la soluzione nella tabella seguente:

Studente	A	В	С	D	Ε	F	G	Н	I	J	K
Compito	1	2	3	2	1	2	3	1	2	1	3
Studente	L	М	N	О	Р	Q	R	S	Т	U	
Compito	2	4	1	2	1	2	1	2	3	4	

L'algoritmo greedy

[A] determina una soluzione ottima, perché la minima colorazione è 4 e non ne esiste una di valore 3

[B] non determina una soluzione ottima, perché

Esercizio #2 (5 punti) Applicando il metodo di Fourier-Motzkin determinare un'espressione algebrica dell'involucro affine dei punti:

$$(6,1,-1)$$
, $(3,-2,1)$

Si imposta il seguente sistema di disequazioni, quindi si proietta sulle sole variabili λ_1,λ_2

λ_1	λ_2	x_1	x_2	x_3	≤
6	3	-1	0	0	0
-6	-3	1	0	0	0
1	-2	0	-1	0	0
-1	2	0	1	0	0
-1	1	0	0	-1	0
1	-1	0	0	1	0
1	1	0	0	0	1
-1	-1	0	0	0	-1

Domande a risposta multipla

Marcare a penna la lettera corrispondente alla risposta ritenuta corretta (una sola tra quelle riportate). Ogni risposta esatta vale 2 punti; la risposta errata verrà valutata -1 punti; la domanda senza risposta vale 0 punti.

1. In un grafo simmetrico G=(V,E) sia $\{S,V-S\}$ una partizione in insiemi stabili con $|S|\geq |V-S|$. Allora

[A]
$$\chi(\bar{G}) \geq |S|$$

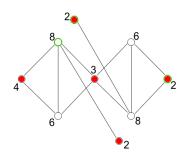
[B]
$$\chi(\bar{G}) \le |V - S|$$

[C]
$$\chi(\bar{G}) \leq |S|$$

2. Un grafo simmetrico G=(V,E) privo di cicli dispari è:

- [A] planare
- [B] euleriano
- [C] **2-colorabile**

3. L'algoritmo greedy per il calcolo dell'insieme dominante di peso minimo applicato al grafo in figura 3



- [A] trova la soluzione ottima di valore
- [B] non trova la soluzione ottima, perché il greedy restituisce un insieme dominante di peso 13 mentre l'ottimo vale 12
- [C] non è applicabile, perché
- 4. Sia $U \subset \mathbb{R}^3$ un insieme finito. Sia \mathcal{F} la famiglia costituita da tutti gli $X \subseteq U$ tali che $(x, y, z) \in X$ se e solo se $z^2 = x^2 + y^2$. La coppia (U, \mathcal{F}) :
 - [A] non è subclusiva
 - [B] è subclusiva ma non è un matroide
 - [C] è un matroide
- 5. Dato un grafo simmetrico G = (V, E) si definisce la famiglia $\mathcal{F} \subseteq 2^E$:

$$\mathcal{F} = \{ X \subseteq E \mid \forall u \in V : uv \in X \Longrightarrow 1 \le \deg(u) \le 2 \}$$

 $(\deg(u): \operatorname{grado} \operatorname{del} \operatorname{nodo} u)$

- [A] \mathcal{F} non è subclusiva
- [B] \mathcal{F} è subclusiva ma non non gode della proprietà di scambio
- [C] \mathcal{F} gode della proprietà di scambio