RICERCA OPERATIVA

prova scritta del 5 Luglio 2005

1. Dato un grafo simmetrico G = (V, E), sia U l'insieme delle clique di G. La famiglia \Im formata da tutti gli insiemi $X \subseteq U$ che coprono i nodi di G

B

GRUPPO

- (A) è subclusiva
- (B) gode della proprietà di scambio
- (C) è un matroide
- 2. Scrivere il duale del problema

min
$$x_1 - 2x_2 + x_4$$

$$x_1 + x_3 - x_4 \le -2$$

$$x_1 - x_2 + 2x_3 = -1$$

$$2x_2 + x_4 \ge 3$$

$$x_3, x_4 \ge 0$$

$$\max 2y_1 - y_2 + 3y_3
-y_1 + y_2 = 1
-y_2 + 2y_3 = -2
-y_1 + 2y_2 \le 0
y_1 + y_3 \le 1
y_1, y_3 > 0$$

3. Applicando il metodo di Fourier-Motzkin, si determini una soluzione ottima del problema

Il valore massimo di $z \ge 7/9$. Una soluzione ottima $\ge x_1 = -2$, $x_2 = 4/9$, $x_3 = 2/9$, $x_4 = 11/3$.

4. Dati i problemi di PL

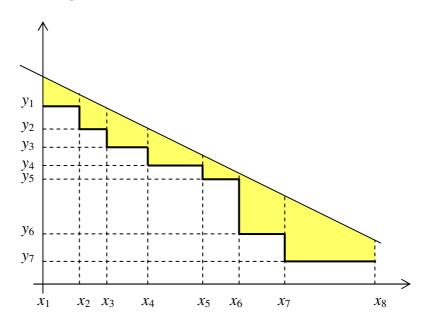
(P)
$$z = \min \mathbf{c} \mathbf{x}$$
 $\mathbf{c} \mathbf{x}$ $\mathbf{D} \mathbf{x} \ge \mathbf{d}$ $\mathbf{c} \mathbf{x} \ge \mathbf{0}$ $\mathbf{c} \mathbf{x} \ge \mathbf{0}$

dire quale delle seguenti affermazioni è vera:

- (A) $z' \leq z$
- (B) $z \le z$
- (C) z' > z

5. Fitting lineare

Si formuli come programmazione lineare il problema di individuare l'equazione y = ax + b di una retta che si trovi al di sopra della spezzata di figura e abbia da essa distanza minima, dove la distanza è definita come l'area della superficie colorata.



Sia la spezzata individuata da 2n punti di coordinate (x_k, y_k) , (x_{k+1}, y_k) , k = 1, ..., n. L'area indicata è data dalla somma dei trapezi aventi base maggiore $(ax_k + b - y_k)$, base minore $(ax_{k+1} + b - y_k)$ e altezza $(x_{k+1} - x_k)$ per k = 1, ..., n. Quindi il doppio dell'area è complessivamente dato da

$$2A(a,b) = \sum_{k=1}^{n} [a(x_{k+1} + x_k) + 2b - 2y_k)](x_{k+1} - x_k)$$

Ponendo

$$p = \sum_{k=1}^{n-1} (x_{k+1}^2 - x_k^2) = \sum_{k=1}^{n} x_k^2 \qquad q = \sum (x_{k+1} - x_k) = x_{n+1} - x_1$$

l'obiettivo del problema si scrive

$$min pa + 2qb$$

Più semplicemente, ma in modo del tutto equivalente, possiamo esprimere l'area colorata come la differenza tra l'area del trapezio di base minore $(ax_{n+1} + b)$, base maggiore $(ax_1 + b)$ e altezza $(x_{n+1} - x_1)$, e l'area C sottesa dalla spezzata. Quindi

$$2A(a,b) = [(ax_{n+1} + b) + (ax_1 + b)](x_{n+1} - x_1) - 2C = [a(x_{n+1} + x_1) + 2b](x_{n+1} - x_1) - 2C$$

Poiché x_1 , x_{n+1} sono costanti note e C ha un'espressione indipendente da a e b, il nostro problema si riduce a

min
$$(x_{n+1} + x_1)a + 2b$$

soggetto ai vincoli

$$x_{k+1}a + b > y_k$$
 $k = 1, ..., n$

i quali esprimono il fatto che la retta si trova sempre al di sopra della spezzata.

6. You wrote it? Then solve it.

Scrivere il duale del problema precedente e risolverlo per la spezzata individuata dai 6 punti (0, 6), (2, 6), (2, 5), (5, 5), (5, 2), (8, 2). Si riportino le tabelle canoniche iniziale e finale.

Problema duale:

$$\max \sum_{k=1}^{n} y_k u_k$$

$$\sum_{k=1}^{n} x_{k+1} u_k = x_{n+1} + x_1$$

$$\sum_{k=1}^{n} u_k = 2$$

$$u_k \ge 0 \qquad k = 1, ..., n$$

Per i punti dati si ha $x_{n+1} + x_1 = 8$, e il problema si riscrive:

$$\max \quad 6u_1 + 5u_2 + 2u_3$$

$$2u_1 + 5u_2 + 8u_3 = 8$$

$$u_1 + u_2 + u_3 = 2$$

$$u_1, u_2, u_3 \ge 0$$
(P)

Costruiamo una tabella canonica di (P) risolvendo il problema ausiliario

min
$$w_1 + w_2$$

 $2u_1 + 5u_2 + 8u_3 + w_1 = 8$
 $u_1 + u_2 + u_3 + w_2 = 2$
 $u_1, u_2, u_3, w_1, w_2 \ge 0$

la cui tabella

u_1	u_2	u_3	w_1	w_2	
0	0	0	1	1	0
2	5	8	1	0	8
1	1	1	0	1	2

si scrive facilmente in forma canonica:

u_1	u_2	u_3	w_1	w_2	
-3	-6	–7	0	0	-10
2	5	8	1	0	8
1	1	1	0	1	2

Operando un pivot in posizione 1, 3 si ha:

u_1	u_2	u_3	w_1	w_2	
-5/4	-13/8	0	7/8	0	-3
1/4	5/8	1	1/8	0	1
3/4	3/8	0	-1/8	1	1

Operando poi un pivot in posizione 1, 2 si ottiene:

u_1	u_2	u_3	w_1	w_2	
-3/5	0	13/5	6/5	0	-2/5
2/5	1	8/5	1/5	0	8/5
3/5	0	-3/5	-1/5	1	2/5

Operando infine un pivot in posizione 2, 1 si ricava:

u_1	u_2	u_3	w_1	w_2	
0	0	2	1	3/5	0
0	1	2	1/3	-2/5	4/3
1	0	-1	-1/3	1	2/3

Poiché le variabili ausiliarie w_1 , w_2 sono entrambe uscite di base, il problema (P) ammette soluzione $u_1 = 2/3$, $u_2 = 4/3$. Scrivendo la tabella corrispondente

u_1	u_2	u_3	
6	5	2	0
0	1	2	4/3
1	0	-1	2/3

e rendendola canonica

u_1	u_2	u_3	
0	0	-2	32/3
0	1	2	4/3
1	0	-1	2/3

si vede che i costi ridotti sono tutti non positivi, quindi la soluzione trovata è ottima.