Rispondere alle seguenti domande marcando a penna la lettera corrispondente alla risposta ritenuta corretta (una sola tra quelle riportate).

Ogni risposta esatta vale 2 punti, ogni risposta sbagliata vale -1 punto.

- 1. Sia U un insieme finito di \mathbb{R}^n e $\mathfrak I$ la famiglia di tutti i sottoinsiemi X di U linearmente dipendenti. Indicare quale tra le seguenti affermazioni è vera:
 - A) $(U; \mathfrak{I})$ è un matroide
 - B) 3 gode della proprietà di scambio
 - C) 3 è subclusiva.
- 2. Scrivere il duale del problema

$$\min 2x_1 + x_2 - x_3 - x_4$$

$$x_2 + 3x_3 - x_4 \le -1$$

$$x_1 - 2x_3 + x_4 = 5$$

$$x_1 + x_2 - x_3 \ge -2$$

$$x_1, x_2 \ge 0$$

Soluzione:

$$\max y_1 + 5y_2 - 2y_3$$

$$y_2 + y_3 \le 2$$

$$-y_1 + y_3 \le 1$$

$$-3y_1 - 2y_2 - y_3 = -1$$

$$y_1 + y_2 = -1$$

$$y_1, y_3 \ge 0$$

3. Applicando il metodo di Fourier-Motzkin, si determini una soluzione ottima del problema

$$\max z = x_1 + 3x_2 + 2x_3 + x_4$$

$$x_1 - 2x_2 + x_3 + x_4 \le 2$$

$$x_1 + x_2 - x_4 \le 1$$

$$x_2 - x_3 - x_4 \le 1$$

$$x_3 \le -1$$

$$x_2 \le -1$$

$$x_i \in \mathbf{R}, i=1,..., 5$$

Soluzione:

Il valore massimo di z è 6.

4. Dati i problemi di PL

(P)
$$\mathbf{z} = \max \mathbf{c} \mathbf{x}$$
 (P) $\mathbf{z}' = \max \mathbf{c} \mathbf{x}$ $\mathbf{A} \mathbf{x} = \mathbf{b}$ $\mathbf{A} \mathbf{x} = \mathbf{b}$ $\mathbf{x} \ge \mathbf{0}$

dire quale delle seguenti affermazioni è vera:

$$(A)$$
 $\mathbf{z} \geq \mathbf{z}$

(B)
$$\mathbf{z} \geq \mathbf{z}$$

(C)
$$z > z$$

RICERCA OPERATIVA prova scritta del 06 Luglio 2005

GRUPPO A FOGLIO 2

Risolvere i seguenti esercizi. La soluzione viene valutata fino a 5 punti.

1. www.trenitalia.com

In una tratta ferroviaria a binario unico durante la giornata circolano n treni in successione. Il k-esimo treno è atteso in stazione all'ora d_k , ma una normativa recentemente introdotta richiede, per motivi di sicurezza, che tra questo treno e il precedente intercorrano almeno t_k minuti: ragion per cui il reale orario di arrivo a_k del treno k-esimo potrebbe essere diverso da d_k . Ovviamente, se $a_k \le d_k$, nessun problema, però se $a_k > d_k$ la qualità del servizio si deteriora. La direzione delle ferrovie, in attesa dell'entrata in vigore del nuovo orario a fine stagione, e volendo d'altra parte adeguare la schedulazione dei treni sulla tratta in modo da minimizzare i disagi all'utenza, ha pensato di penalizzare ogni minuto di ritardo in arrivo del treno k con k0 euro e si è posta l'obiettivo di minimizzare la penalità complessiva. Formulate questo problema come programmazione lineare.

Soluzione:

Il problema consiste nello scegliere gli orari di arrivo effettivo in stazione degli n treni rispettando le distanze temporali tra ogni treno e il successivo, e allo stesso tempo minimizzando il ritardo pesato conseguito complessivamente dagli n treni. Le nostre variabili di decisione saranno quindi le a_k , definite per k = 1, ..., n. Tali variabili devono soddisfare i seguenti vincoli:

$$a_{k+1} \ge a_k + t_{k+1}$$
 per $k = 1, ..., n-1$

Il ritardo r_k del k-esimo treno sull'orario previsto è pari a $a_k - d_k$ se $a_k > d_k$, mentre è pari a 0 se $a_k \le d_k$. Quindi r_k soddisfa certamente

$$r_k \ge a_k - d_k$$

 $r_k \ge 0$ per $k = 1, ..., n$

L'obiettivo consiste nel minimizzare la somma dei ritardi degli n treni pesati con i fattori w_k :

$$\min \sum_{k=1}^{n} w_k r_k$$

2. Voila la solution

Usando il metodo del simplesso dimostrate che se i treni sono n = 3 e si ha t2 = 5, t3 = 6, per d1 = 0, d2 = 4 e d3 = 7 esiste una soluzione senza alcun ritardo.

Soluzione:

Per dimostrare la tesi basta far vedere che il problema formulato all'Esercizio 1 ammette nel caso in esame una soluzione tale che $r_1 + r_2 + r_3 = 0$. Siccome gli r_k sono ≥ 0 , basta scrivere il problema per $w_k = 1$. Siccome poi il problema è in forma generale, il suo duale è in forma standard, e si scrive

$$\begin{array}{rcl}
\max & 5x_1 + 6x_2 - 4x_4 - 7x_5 \\
-x_1 - x_3 & = 0 \\
x_1 - x_2 - x_4 & = 0 \\
x_2 - x_5 & = 0 \\
x_3 + x_6 & = 1
\end{array}$$

$$x_4 + x_7 = 1$$

 $x_5 + x_8 = 1$
 $x_1, \dots, x_8 > 0$

La tabella del simplesso associata è:

x_1	x_2	x_3	χ_4	χ_5	x_6	x_7	x_8	
5	6	0	-4	- 7	0	0	0	0
-1		-1						0
1	-1		-1					0
	1			-1				0
		1			1			1
			1			1		1
				1			1	1

e come si vede non è in forma canonica. E' tuttavia immediato osservare che

- a) le variabili x6, x7, x8 corrispondono a colonne unitarie
- b) altre due colonne unitarie si possono ottenere sostituendo alla riga 2 la somma delle righe 2 e 3, e moltiplicando la riga 1 per -1.

Dopo l'operazione (b) si ha quindi:

x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	
5	6	0	-4	– 7	0	0	0	0
1		1						0
			-1	-1				0
	1			-1				0
		1			1			1
			1			1		1
				1			1	1

La colonna unitaria mancante si può ora ottenere sostituendo alla riga 5 la somma delle righe 5 e 2, e poi moltiplicando la riga 2 per -1:

x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	
5	6	0	-4	– 7	0	0	0	0
1		1						0
			1	1				0
	1			-1				0
		1			1			1
				-1		1		1
				1			1	1

Per giungere alla forma canonica basta ora sommare alla riga 0 le righe 1, 2, 3 moltiplicate rispettivamente per -5, 4, -6.

x_1	x_2	x_3	x_4	χ_5	x_6	x_7	x_8	
0	0	-5	0	3	0	0	0	0
1		1						0
			1	1				0
	1			-1				0
		1			1			1
				-1		1		1

	1		1	1

Questa soluzione, peraltro degenere, non è necessariamente ottima in quanto il costo ridotto della variabile x_5 è positivo. Operando un pivot in riga 2 e colonna 5 si ottiene la tabella

x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	
0	0	-5	-3	0	0	0	0	0
1		1						0
			1	1				0
	1		1					0
		1			1			1
			1			1		1
·			-1				1	1

La soluzione ottenuta è ottima dal momento che tutti i costi ridotti sono non positivi. Il suo valore, che per la dualità forte corrisponde al valore di ogni soluzione ottima primale, è 0: dunque esiste effettivamente una soluzione primale che non fa arrivare treni in ritardo (in particolare basta scegliere $a_1 = -4$, $a_2 = 1$, $a_3 = 7$).