RICERCA OPERATIVA

GRUPPO A

prova scritta dell'11 settembre 2012

1. Dire se il vettore $\mathbf{v} = (1, \frac{2}{3}, \frac{1}{3})$ è combinazione convessa o solo conica dei vettori $\mathbf{v}_1 = (\frac{2}{3}, \frac{2}{3}, 0)$, $\mathbf{v}_2 = (1, \frac{1}{3}, 1)$ e $\mathbf{v}_3 = (2, \frac{4}{3}, 0)$.

Il vettore v si ottiene combinando \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 con coefficienti $\lambda_1 = \frac{1}{2}$, $\lambda_2 = \frac{1}{3}$, $\lambda_3 = \frac{1}{6}$. Tutti i coefficienti sono > 0 e la loro somma è pari a 1, dunque la combinazione è convessa.

2. Dato il problema lineare:

min
$$x_1 - x_2 + x_3$$

 $x_1 - x_2$ ≥ -4
 $2x_1 - x_2 + x_3$ ≤ -1
 x_2, x_3 ≥ 0

a) scrivete il problema duale associato;

$$\max -4y_1 + y_2 y_1 - 2y_2 = 1 -y_1 + y_2 \le -1 -y_2 \le 1 y_1, y_2 \ge 0$$

- b) scrivete le condizioni di complementarità; $x_1(1-y_1+2y_2)+x_2(-1+y_1-y_2)+x_3(1+y_2)=0;$ $y_1(-4-x_1+x_2)+y_2(1+2x_1-x_2+x_3)=0.$ c) applicando quest'ultime, verificate se la soluzione $x_1^*=-\frac{1}{2}, x_2^*=x_3^*=3$ è ottima oppure no.
- applicando quest'ultime, verificate se la soluzione $x_1^* = -\frac{1}{2}$, $x_2^* = x_3^* = 3$ è ottima oppure no Le condizioni forniscono: $-\frac{1}{2}(1-y_1+2y_2)+3(-1+y_1-y_2)+3(1+y_2)=0$; $\frac{1}{2}y_1=0$ Sostituendo: $-\frac{1}{2}(1+2y_2)+3(-1-y_2)+3(1+y_2)=0 \rightarrow y_2=-\frac{1}{2}$ L'unica soluzione duale che soddisfa le condizioni è inammissibile, quindi \mathbf{x}^* non è ottima.
- 3. Applicando il metodo di Fourier-Motzkin, risolvete il seguente problema di programmazione lineare, esibendo la soluzione ottima (qualora esista) e il suo valore, oppure classificando il problema come inammissibile o illimitato: $\max 4x_1 + 3x_2 + 2x_3 = \max z 4x_1 3x_2 2x_3 < 0$

L'ultima tabella fornisce $2z \le 14$, $4z \ge -32$, $z \ge -3$, quindi il massimo valore di z compatibile con le disequazioni scritte è $z^* = 7$. Questo valore corrisponde alla soluzione ottima $x_1^* = 0$, $x_2^* = 1$, $x_3^* = 2$.

4. Termovalorizzare. Un impianto di cogenerazione produce energia elettrica e fornisce riscaldamento a un insieme di abitazioni trasformando tre tipi di combustibili: metano, gasolio e rifiuti pre-trattati. La tabella seguente fornisce l'energia elettrica (kW/h) e termica (kcal) ottenute dalle varie fonti e, nell'ultima colonna, il fabbisogno giornaliero da coprire. Tenendo presente che un'unità di metano (gasolio, rifiuti) costa 1000 (800, 100) euro e che non si possono trasformare più di 2 unità di rifiuti al giorno, risolvete con il metodo del simplesso il problema di soddisfare il fabbisogno al costo minimo.

	metano	gasolio	rifiuti	fabbisogno
kWh	300	200	60	1200
kcal	250	400	100	1000

Soluzione ottima: 3,6 unità giornaliere di metano, 2 unità giornaliere di rifiuti. Costo giornaliero 3800€.

5. Uno spedizioniere s deve rispettivamente fornire d_1 e d_2 unità di una certa merce a due magazzini. Seguendo una via ordinaria, il trasporto da s al magazzino 1 e dal magazzino 1 al magazzino 2 richiede una giornata. Usando tale via, le quantità trasportate da s a 1 e da 1 a 2 non possono eccedere, rispettivamente, u_{s1} e u_{12} unità; e il trasporto di una singola unità di merce costa rispettivamente c_{s1} e c_{12} . In alternativa, s può servirsi di una via più costosa, di capacità u_{s2} e costo unitario c_{s1} , che rifornisce direttamente il magazzino 2 in una sola giornata. Infine è possibile smistare l'eventuale eccesso di

merce non smaltita attraverso i canali precedenti utilizzando una terza via di capacità illimitata che collega il magazzino 1 al magazzino 2, al costo di $c_0 = 50$ euro per unità spedita.

Entrambi i magazzini attendono in giornata l'intero quantitativo di merce richiesto. E' tuttavia possibile far giungere al magazzino 2 parte della merce in ritardo: ma a ogni unità giunta in ritardo viene applicata una penale $p_0 = 30$ euro. Modellare il problema come flusso a costo minimo e, a partire dai dati riportati in tabella, determinare una soluzione ottima con il metodo del simplesso su reti.

		d_i	c_{si}	u_{si}		_	tratta 1-2	_
	1	300	30	400		C ₁₂	40	
	2	200	60	100		<i>u</i> ₁₂	80	
$x_s \\ x_s \\ 0 \\ 0 \\ 0$	$c_{1}x_{s1} + (c_{12} - p_{0})x_{12}$ $c_{1} - x_{12} - y_{12} = d_{1}$ $c_{2} + x_{12} + y_{12} = d_{2}$ $\leq x_{s1} \leq u_{s1}$ $\leq x_{s2} \leq u_{s2}$ $\leq x_{12} \leq u_{12}$ $\leq y_{12}$	$c_2 + c_{s2}x_s$	$c_2 + (c_0 - p_0)$	<i>y</i> ₁₂	cioè	min	$x_{s1} - x_{12}$	100

Risolvendo si ottiene la soluzione ottima $x_{s1}^* = 400$, $x_{12}^* = 80$, $x_{s2}^* = 100$, $y_{12}^* = 20$ di costo 1920€.

RICERCA OPERATIVA

GRUPPO B

prova scritta dell'11 settembre 2012

Dire se il vettore $\mathbf{v} = (1, \frac{2}{3}, \frac{1}{3})$ è combinazione convessa o solo conica dei vettori $\mathbf{v}_1 = (\frac{2}{3}, \frac{2}{3}, 0)$, $\mathbf{v}_2 = (1, \frac{1}{3}, 1) \text{ e } \mathbf{v}_3 = (2, \frac{4}{3}, 0).$ Vedi soluzione Gruppo A.

min

2. Dato il problema lineare:

$$\begin{array}{ccc}
x_1 - x_2 + x_3 \\
x_1 - x_2 & \ge -4 \\
2x_1 - x_2 + x_3 & \le -1 \\
x_1, x_2, x_3 & \ge 0
\end{array}$$

scrivete il problema duale associato; a)

$$\max -4y_1 + y_2 y_1 - 2y_2 \le 1 -y_1 + y_2 \le -1 -y_2 \le 1 y_1, y_2 \ge 0$$

scrivete le condizioni di complementarità;
$$x_1(1-y_1+2y_2)+x_2(-1+y_1-y_2)+x_3(1+y_2)=0$$
; $y_1(-4-x_1+x_2)+y_2(1+2x_1-x_2+x_3)=0$. applicando quest'ultime, verificate se la soluzione $x_2^*=4$, $x_1^*=x_3^*=0$ è ottima oppure no.

Le condizioni forniscono:
$$0 (1 - y_1 + 2y_2) + 4 (-1 + y_1 - y_2) + 0 (1 + y_2) = 0$$
; $-3y_2 = 0$
Sostituendo: $0 (1 - y_1) + 4 (-1 + y_1) + 0 (1) = 0 \rightarrow -1 + y_1 = 0$, cioè $y_1 = 1$.
La soluzione duale trovata ha il medesimo valore della soluzione primale, quindi \mathbf{x}^* è ottima.

Applicando il metodo di Fourier-Motzkin, risolvete il seguente problema di programmazione lineare, esibendo la soluzione ottima (qualora esista) e il suo valore, oppure classificando il problema come

inammissibile o illimitato: $\max 4x_1 + 3x_2 + 2x_3$

$$\begin{array}{rcl}
-x_1 + 3x_2 + 2x_3 \\
-x_1 - x_2 + x_3 & \geq 1 \\
-2x_1 + x_2 + x_3 & \geq 3 \\
-x_1 + x_2 + x_3 & \leq 3 \\
x_1, x_2, x_3 & \geq 0
\end{array}$$

Vedi soluzione Gruppo A.

Termovalorizzare. Un impianto di cogenerazione produce energia elettrica e fornisce riscaldamento a un insieme di abitazioni trasformando tre tipi di combustibili: metano, gasolio e rifiuti pre-trattati. La tabella seguente fornisce l'energia elettrica (kW/h) e termica (kcal) ottenute dalle varie fonti e, nell'ultima colonna, il fabbisogno giornaliero da coprire. Tenendo presente che un'unità di metano (gasolio, rifiuti) costa 1000 (800, 100) euro e che non si possono trasformare più di 3 unità di rifiuti al giorno, risolvete con il metodo del simplesso il problema di soddisfare il fabbisogno al costo minimo.

	metano	gasolio	rifiuti	fabbisogno
kWh	300	200	60	1500
kcal	250	400	100	1400

Soluzione ottima: 4,4 unità giornaliere di metano, 3 unità giornaliere di rifiuti. Costo giornaliero 4800€.

Uno spedizioniere s deve rispettivamente fornire d_1 e d_2 unità di una certa merce a due magazzini. Seguendo una via ordinaria, il trasporto da s al magazzino 1 e dal magazzino 1 al magazzino 2 richiede una giornata. Usando tale via, le quantità trasportate da s a 1 e da 1 a 2 non possono eccedere, rispettivamente, u_{s1} e u_{12} unità; e il trasporto di una singola unità di merce costa rispettivamente c_{s1} e c_{12} . In alternativa, s può servirsi di una via più costosa, di capacità u_{s2} e costo unitario c_{s1} , che rifornisce direttamente il magazzino 2 in una sola giornata. Infine è possibile smistare l'eventuale eccesso di merce non smaltita attraverso i canali precedenti utilizzando una terza via di capacità illimitata che collega il magazzino 1 al magazzino 2, al costo di $c_0 = 5$ euro per unità spedita.

Entrambi i magazzini attendono in giornata l'intero quantitativo di merce richiesto. E' tuttavia possibile far giungere al magazzino 2 parte della merce in ritardo: ma a ogni unità giunta in ritardo viene applicata una penale $p_0 = 3$ euro. Modellare il problema come flusso a costo minimo e, a partire dai dati riportati in tabella, determinare una soluzione ottima con il metodo del simplesso su reti.

$$\begin{array}{c|cccc} d_i & c_{si} & u_{si} \\ \hline 1 & 300 & 3 & 400 \\ 2 & 200 & 6 & 100 \\ \hline \end{array}$$

tratta 1-2
$$c_{12}$$
 4
 u_{12} 80