Modelli per la gestione delle scorte

Claudio Arbib Università di L'Aquila

Prima Parte: gestione periodica

Sommario

- Introduzione
 Termini del problema
- 2. Costi di spedizione
- 3. Costi di giacenza
- 4. Gestione ordini periodica di singola risorsa (EOQ)
 - <u>assorbimento costante</u> <u>assorbimento variabile con regolarità</u>
- 5. Limiti del modello EOQ

1. Introduzione

- La produzione di un bene materiale coinvolge generalmente quantità limitate di risorse
- Ciascuna risorsa costituisce di norma una scorta
 - in *ingresso*, ad alimentare la produzione per un certo periodo di tempo
 - in *uscita*, destinata alla distribuzione
- Gestire le scorte può comportare la risoluzione di problemi decisionali

Voci di costo

- trasporto
- giacenza
- lavoro

Decisioni

- quanto acquistare/produrre
- quando acquistare/produrre

Dati e vincoli

- parametri di processo
- domanda
- infrastruttura logistica

Termini del problema

- La produzione di un bene materiale coinvolge generalmente quantità limitate di risorse
- Ciascuna risorsa costituisce di norma una scorta
 - in *ingresso*, ad alimentare la produzione per un certo periodo di tempo
 - in *uscita*, destinata alla distribuzione
- Gestire le scorte può comportare la risoluzione di problemi decisionali

Esempio In un impianto si fa uso di due tipi di risorsa.

Siano $b_{11} = 100 \text{ q.li}$ $b_{21} = 90 \text{ q.li}$

le scorte delle risorse 1 e 2 disponibili il giorno 1

Parametri di processo:

Il processo consuma

 $a_1 = 2$ q.li di risorsa 1 $a_2 = 3$ q.li di risorsa 2 per q.le di prodotto finito. La capacità di produzione giornaliera è $q_{max} = 20$ q.li

Termini del problema

- Sia x_t la quantità prodotta il giorno t
- Si ha $x_1 \le b_{11}/a_1 = 50$ $x_1 \le b_{21}/a_2 = 30$ $0 \le x_1 \le q_{max} = 20$
- La soluzione $x_1^* = 20$ sfrutta appieno la capacità di produzione del giorno 1
- All'inizio del giorno 2 le scorte valgono quindi

$$b_{12} = b_{11} - a_1 x_1^* = 60
 b_{22} = b_{21} - a_2 x_1^* = 30$$

Esempio In un impianto si fa uso di due tipi di risorsa.

Siano
$$b_{11} = 100 \text{ q.li}$$

 $b_{21} = 90 \text{ q.li}$

le scorte delle risorse 1 e 2 disponibili il giorno 1

Parametri di processo:

Il processo consuma

$$a_1 = 2$$
 q.li di risorsa 1
 $a_2 = 3$ q.li di risorsa 2
per q.le di prodotto finito.
La capacità di produzione
giornaliera è $q_{max} = 20$ q.li

Termini del problema

- Sia x_t la quantità prodotta il giorno t
- Si ha $x_1 \le b_{11}/a_1 = 50$ $x_1 \le b_{21}/a_2 = 30$ $0 \le x_1 \le q_{max} = 20$
- La soluzione $x_1^* = 20$ sfrutta appieno la capacità di produzione del giorno 1
- All'inizio del giorno 2 le scorte valgono quindi

$$b_{12} = b_{11} - a_1 x_1^* = 60$$

$$b_{22} = b_{21} - a_2 x_1^* = 30$$

• Ripetendo il procedimento si ottiene

$$x_2 \le b_{12}/a_1 = 30$$

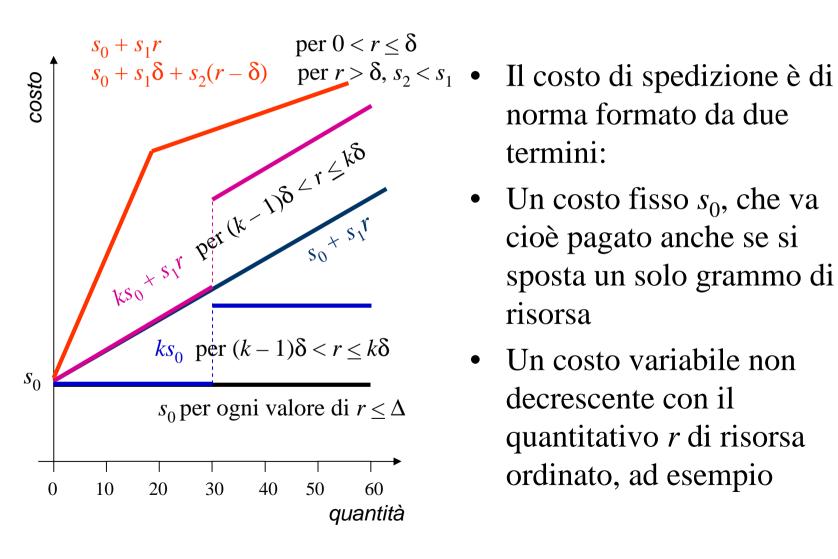
 $x_2 \le b_{22}/a_2 = 10$
 $0 \le x_2 \le q_{max} = 20$

- La massima produzione vale $x_2^* = 10$ e non sfrutta la capacità di produzione del giorno 2
- Per mantenere la produzione a regime occorre rifornirsi di almeno $r = a_2q_{max} - b_{22} = 30$ entro t = 1

2. Costi di spedizione <u>U</u>

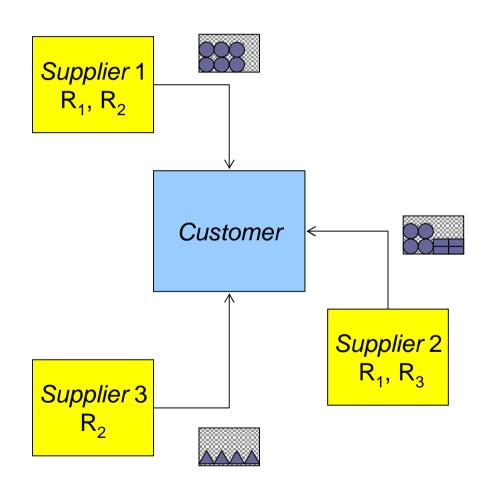
- Riassumendo, siamo riusciti a circoscrivere le <u>decisioni</u> come segue:
 - quanto acquistare $r \ge 30$
 - quando acquistare $t \leq 1$
- Per precisarle ulteriormente dobbiamo esaminare le <u>voci</u> <u>di costo</u>
- Iniziamo dai costi di spedizione

- Il costo di spedizione è di norma formato da due termini:
- Un costo fisso s_0 , che va cioè pagato anche se si sposta un solo grammo di risorsa
 - Un costo variabile non decrescente con il quantitativo *r* di risorsa ordinato, ad esempio

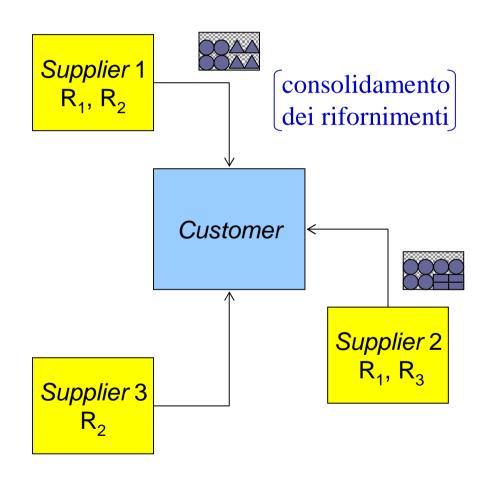


- norma formato da due termini:
- Un costo fisso s_0 , che va cioè pagato anche se si sposta un solo grammo di risorsa
- Un costo variabile non decrescente con il quantitativo r di risorsa ordinato, ad esempio

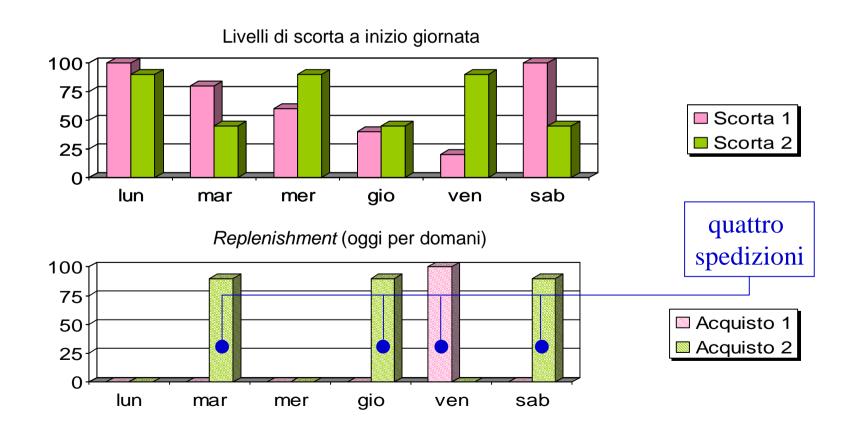
- Anche le caratteristiche dell'infrastruttura logistica
 - molteplicità di fornitori
 - capacità dei collegamenti
 hanno influenza sui costi
- Risorse eterogenee e/o non ancora critiche possono essere trasportate su un medesimo veicolo fino a saturazione della capacità, evitando la duplicazione di costi fissi



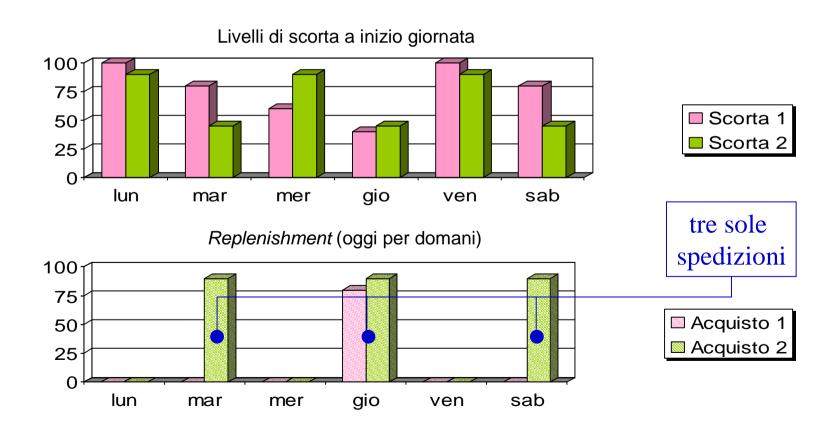
- Anche le caratteristiche dell'infrastruttura logistica
 - molteplicità di fornitori
 - capacità dei collegamenti
 hanno influenza sui costi
- Risorse eterogenee e/o non ancora critiche possono essere trasportate su un medesimo veicolo fino a saturazione della capacità, evitando la duplicazione di costi fissi



• Può essere quindi conveniente sincronizzare i rifornimenti per condividere risorse di trasporto e ottenere economie di scala

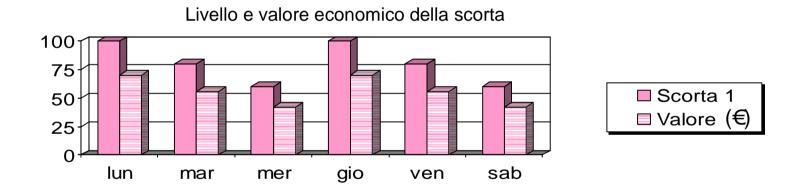


• Può essere quindi conveniente sincronizzare i rifornimenti per condividere risorse di trasporto e ottenere economie di scala



3. Costi di giacenza <u>Ù</u>

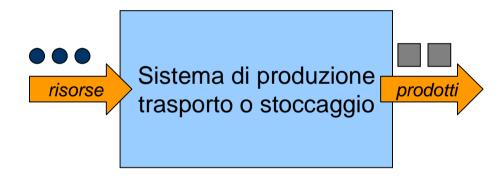
• Tuttavia mantenere immobilizzato un bene materiale comporta un costo, quantificabile in sostanza come utili non percepiti



- Pensiamo a un conto in banca: a fine anno vengono accreditati utili il cui valore *U* cresce con
 - la permanenza di valuta sul conto
 - il saggio di interesse σ_t praticato in ogni giorno t del periodo T

$$U = \frac{1}{|T|} \sum_{t \in T} \sigma_t v_t b_t$$
 Costo per la giacenza di un'unità di risorsa nel giorno t
$$g_0(t) = \sigma_t v_t$$

Minore l'accumulo di scorte nel sistema;
 minore il tempo di latenza dei materiali
 (tempo di attraversamento o lead time);

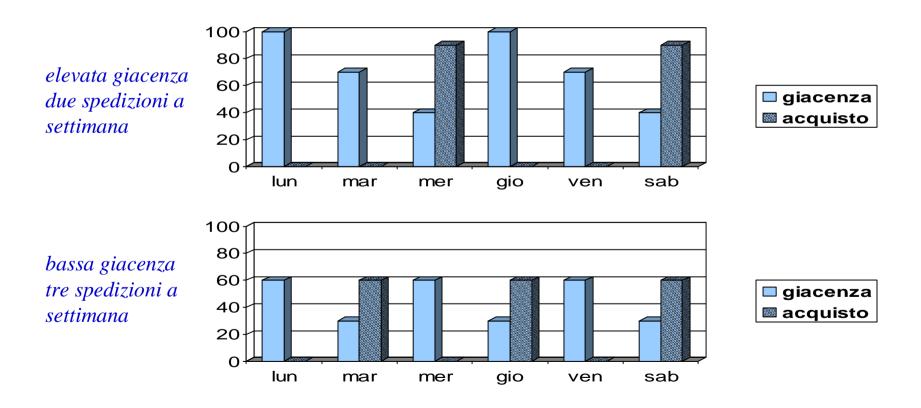


minori i costi di giacenza.

- Il costo di giacenza dipende quindi:
 - dal valore economico della risorsa
 - dal suo quantitativo medio immobilizzato o nascosto all'interno del sistema nel periodo di pianificazione

Controindicazioni

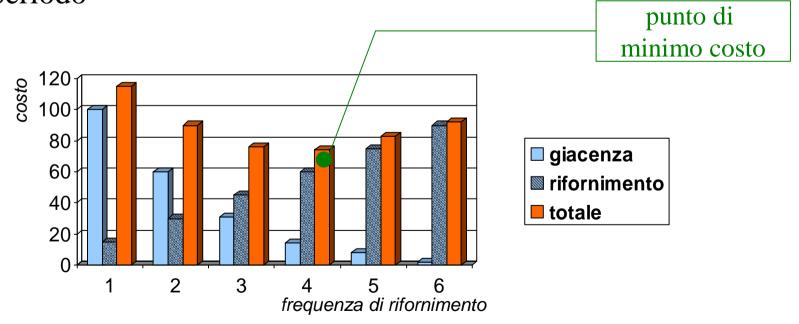
• Di norma l'andamento del costo di giacenza è opposto a quello del costo di spedizione



Controindicazioni

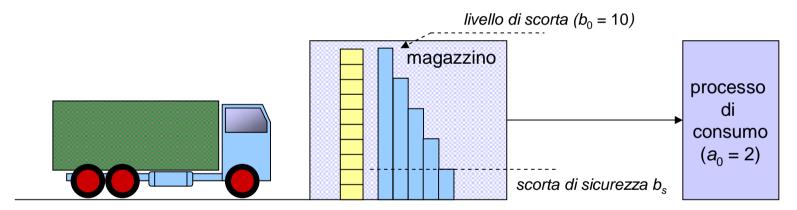
- In un periodo di pianificazione prefissato T
 - il costo di giacenza decresce
 - il costo di trasporto cresce

con la frequenza $f = 1/\Delta t$ di rifornimento delle risorse nel periodo

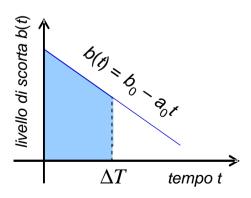


4. Gestione ordini periodici <u>U</u>

- Per modellare il problema di minimizzare i costi complessivi (giacenza + trasporto) iniziamo con l'ipotizzare quanto segue:
 - una sola risorsa viene consumata con tasso di assorbimento costante a_0 fino a un certo limite di sicurezza b_s (safety stock)

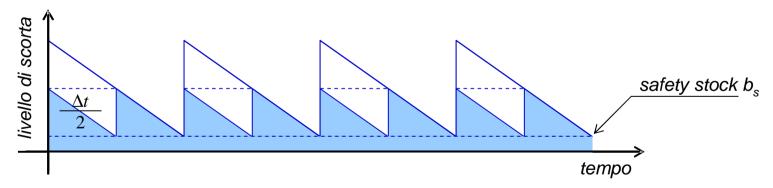


- il livello di scorta in magazzino b(t)
 decresce quindi linearmente nel tempo
- la giacenza media nell'intervallo $[0, \Delta T]$ corrisponde all'area celeste = $\int_0^{\Delta T} b(t)dt$



Gestione ordini periodici

- Per modellare il problema di minimizzare i costi complessivi (giacenza + trasporto) iniziamo con l'ipotizzare quanto segue:
 - una sola risorsa viene consumata con tasso di assorbimento costante a_0 fino a un certo limite di sicurezza b_s (safety stock)
 - l'approvvigionamento avviene con periodo costante Δt e con un costo s_0 per ciascuna spedizione, indipendentemente dal quantitativo spedito



Dimezzamento del periodo di rifornimento (raddoppia la frequenza)

Dimezzamento della giacenza variabile + Raddoppio delle spedizioni

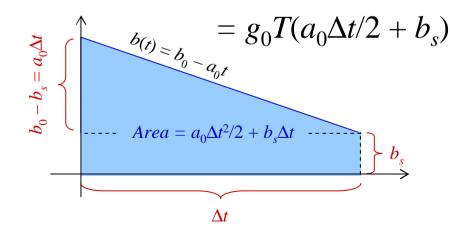
Lotto economico di acquisto

(Economic Order Quantity)

• Si possono allora esprimere i costi di giacenza e trasporto in un orizzonte temporale *T* come:

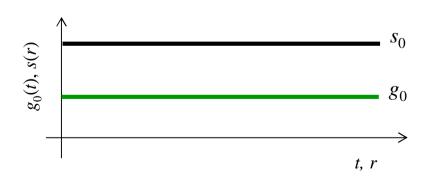
$$s(\Delta t) = s_0 \cdot \frac{T}{\Delta t}$$

$$g(\Delta t) = g_0 \cdot \int_0^T b(t) dt =$$



Supponiamo che

- il costo di giacenza $g_0(t)$ di un'unità di risorsa in un tempo unitario (es. un giorno) non vari nel tempo: $g_0(t) = g_0$
- il costo s(r) di una singola spedizione non dipenda dalla quantità r spedita: $s(r) = s_0$



Lotto economico di acquisto

(Economic Order Quantity)

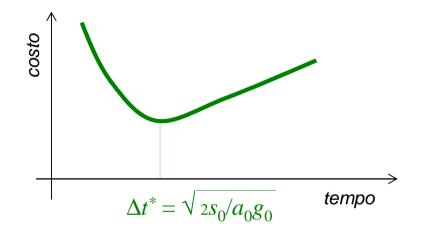
• Si possono allora esprimere i costi di giacenza e trasporto in un orizzonte temporale *T* come:

$$s(\Delta t) = s_0 \cdot \frac{T}{\Delta t}$$

$$g(\Delta t) = g_0 T(a_0 \Delta t/2 + b_s)$$

• Il costo complessivo di gestione è pari a

$$C(\Delta t) = T(\frac{s_0}{\Delta t} + \frac{a_0 g_0 \Delta t}{2} + g_0 b_s)$$



Esiste un'unica soluzione ottima Δt^* , indipendente da $T e b_s$, che si può calcolare annullando la derivata prima:

$$0 = \frac{a_0 g_0}{2} - \frac{s_0}{\Delta t^2}$$

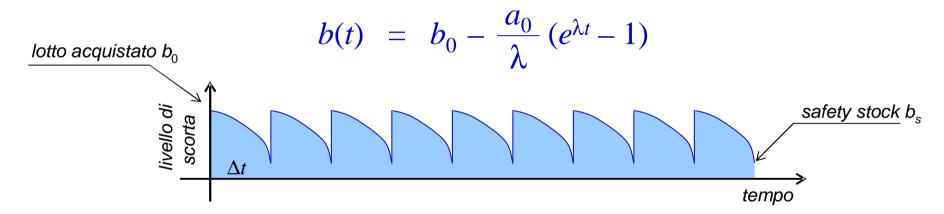
Assorbimento variabile

- In alcuni casi (ad es. risorse deperibili, obsolescenza etc.) l'ipotesi di tasso di assorbimento costante nel tempo può risultare troppo semplicistica.
- Esempio. In un'industria conserviera la quantità di prodotto trattabile decresce in ragione del tempo t trascorso dalla sua acquisizione. Ciò fa sì che la quantità necessaria per ottenere un'unità di prodotto finito cresca con t, o in altri termini che il tasso di assorbimento della scorta sia una funzione crescente del tempo: a = a(t)

Detta $r = b_0$ la scorta di prodotto fresco acquisita all'istante $t_0 = 0$, a t ore di distanza il livello di scorta sarà dato da

$$b(t) = b_0 - \int_0^t a(\tau) d\tau$$

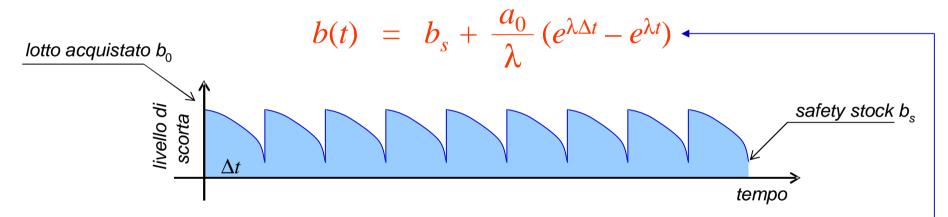
• In genere, il tasso di deterioramento di un prodotto ha un andamento esponenziale. Supponiamo $a(t) = a_0 e^{\lambda t}$, con $a(0) = a_0$ (tasso di assorbimento iniziale) e $\lambda \ge 0$. Si ha quindi



Detta $r = b_0$ la scorta di prodotto fresco acquisita all'istante $t_0 = 0$, a t ore di distanza il livello di scorta sarà dato da

$$b(t) = b_0 - \int_0^t a(\tau) d\tau$$

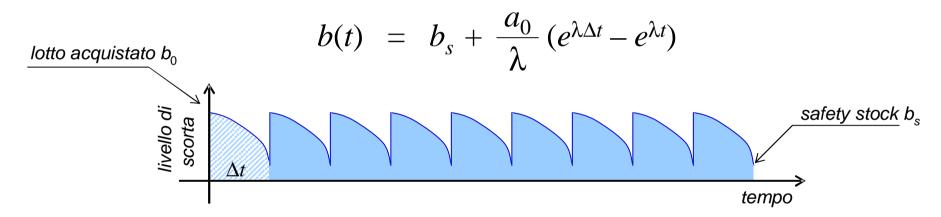
• In genere, il tasso di deterioramento di un prodotto ha un andamento esponenziale. Supponiamo $a(t) = a_0 e^{\lambda t}$, con $a(0) = a_0$ (tasso di assorbimento iniziale) e $\lambda \ge 0$. Si ha quindi



Sia Δt il periodo di rifornimento. Per evitare inutili giacenze il rifornimento b_0 va scelto in modo che la scorta residua al tempo Δt sia pari alla scorta di sicurezza b_s

$$b_s = b_0 - \frac{a_0}{\lambda} (e^{\lambda \Delta t} - 1) \implies b_0 = b_s + \frac{a_0}{\lambda} (e^{\lambda \Delta t} - 1) - b_0$$

• In genere, il tasso di deterioramento di un prodotto ha un andamento esponenziale. Supponiamo $a(t) = a_0 e^{\lambda t}$, con $a(0) = a_0$ (tasso di assorbimento iniziale) e $\lambda \ge 0$. Si ha quindi

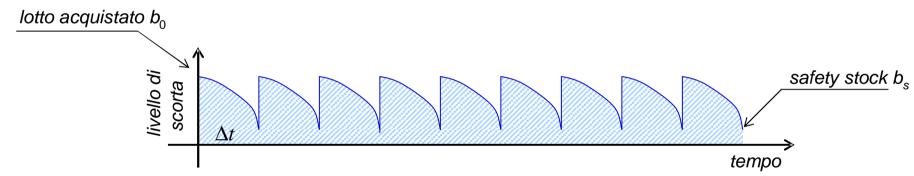


Il costo di giacenza dipende dal periodo Δt . Per esprimerlo calcoliamo l'integrale di b(t) esteso all'intervallo $[0, \Delta t]$

$$\int_{0}^{\Delta t} (b_s + \frac{a_0}{\lambda} e^{\lambda \Delta t}) d\tau - \frac{a_0}{\lambda} \int_{0}^{\Delta t} e^{\lambda \tau} d\tau = b_s \Delta t + \frac{a_0 \Delta t}{\lambda} e^{\lambda \Delta t} - \frac{a_0}{\lambda^2} (e^{\lambda \Delta t} - 1)$$

• Eseguendo i calcoli si ottiene l'area totale in funzione di Δt

Area =
$$T$$
 $b_s + \frac{a_0}{\lambda} e^{\lambda \Delta t} - \frac{a_0}{\lambda^2 \Delta t} (e^{\lambda \Delta t} - 1)$

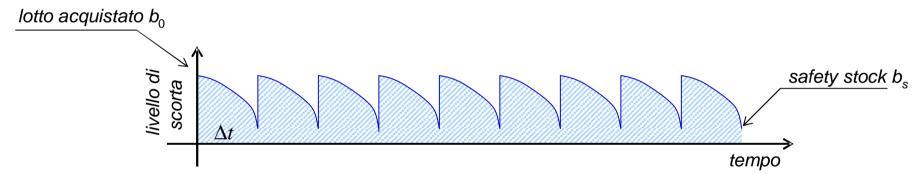


Quest'area si ripete $T/\Delta t$ volte nel periodo di pianificazione T

$$\frac{T}{\Delta t} \left[b_s \Delta t + \frac{a_0 \Delta t}{\lambda} e^{\lambda \Delta t} - \frac{a_0}{\lambda^2} (e^{\lambda \Delta t} - 1) \right]$$

• Eseguendo i calcoli si ottiene l'area totale in funzione di Δt

Area =
$$T \left[b_s + \frac{a_0}{\lambda} e^{\lambda \Delta t} - \frac{a_0}{\lambda^2 \Delta t} (e^{\lambda \Delta t} - 1) \right]$$



Il costo di giacenza è proporzionale all'area secondo g_0

$$g(\Delta t) = g_0 T \left[b_s + \frac{a_0}{\lambda} e^{\lambda \Delta t} - \frac{a_0}{\lambda^2 \Delta t} (e^{\lambda \Delta t} - 1) \right]$$

Costo totale

Il costo totale si ottiene sommando tra loro

il costo di giacenza

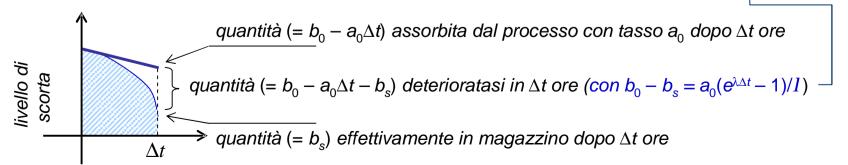
$$g(\Delta t) = g_0 T \left[b_s + \frac{a_0}{\lambda} e^{\lambda \Delta t} - \frac{a_0}{\lambda^2 \Delta t} (e^{\lambda \Delta t} - 1) \right]$$

• il costo di spedizione (proporzionale secondo s_0 al numero di spedizioni nel periodo di pianificazione)

$$s(\Delta t) = s_0 T / \Delta t$$

• il costo dovuto alle perdite di prodotto per deterioramento (proporzionale secondo il valore v_0 del prodotto alla quantità deterioratasi nell'intervallo Δt) $\rho(\Delta t) = \frac{v_0 a_0}{(a \lambda \Delta t)}$

$$p(\Delta t) = \frac{v_0 a_0}{\lambda} \left(e^{\lambda \Delta t} - \lambda \Delta t - 1 \right)$$



Costo totale

Il costo totale si ottiene sommando tra loro

• il costo di giacenza

- il costo di spedizione
- il costo dovuto alle perdite di prodotto per deterioramento

$$C(\Delta t) =$$

$$= g_0 T \left[b_s + \frac{a_0}{\lambda} e^{\lambda \Delta t} - \frac{a_0}{\lambda^2 \Delta t} (e^{\lambda \Delta t} - 1) + \frac{s_0}{g_0 \Delta t} \right] + \frac{v_0 a_0}{\lambda} (e^{\lambda \Delta t} - \lambda \Delta t - 1)$$

Periodo di rifornimento ottimo

• Come nel caso di assorbimento costante, il periodo di riforni mento ottimo Δt^* si ricava annullando la derivata di $C(\Delta t)$

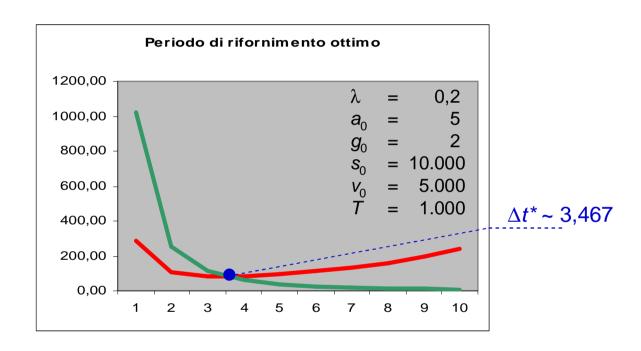
$$0 = a_0 \left[e^{\lambda \Delta t} - \frac{1}{\lambda^2 \Delta t^2} - \frac{1}{\lambda \Delta t} e^{\lambda \Delta t} + \frac{1}{\lambda^2 \Delta t^2} e^{\lambda \Delta t} - \frac{s_0}{a_0 g_0 \Delta t^2} + \frac{v_0}{g_0 T} (e^{\lambda \Delta t} - 1) \right]$$

$$\left[1 - \frac{1}{\lambda \Delta t} + \frac{1}{\lambda^2 \Delta t^2} + \frac{v_0}{g_0 T} \right] e^{\lambda \Delta t} = \frac{1 + \lambda^2 s_0 / a_0 g_0}{\lambda^2 \Delta t^2} - \frac{v_0}{T g_0}$$

$$C(\Delta t) =$$

$$= g_0 T \left[b_s + \frac{a_0}{\lambda} e^{\lambda \Delta t} - \frac{a_0}{\lambda^2 \Delta t} (e^{\lambda \Delta t} - 1) + \frac{s_0}{g_0 \Delta t} \right] + \frac{v_0 a_0}{\lambda} (e^{\lambda \Delta t} - \lambda \Delta t - 1)$$

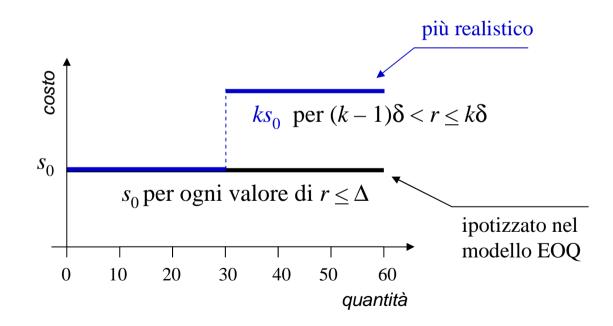
Periodo di rifornimento ottimo



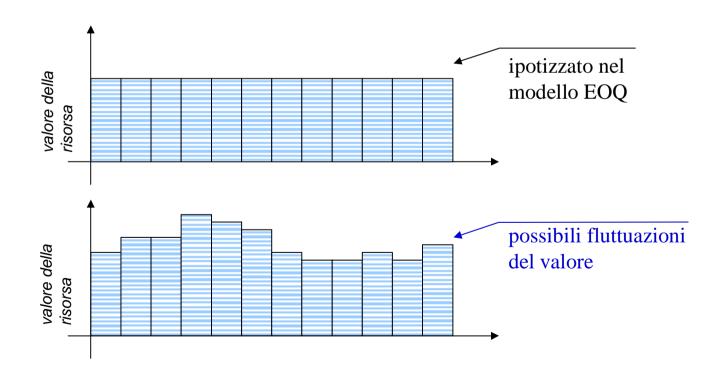
$$\left[1 - \frac{1}{\lambda \Delta t} + \frac{1}{\lambda^2 \Delta t^2} + \frac{v_0}{g_0 T}\right] e^{\lambda \Delta t} = \frac{1 + \lambda^2 s_0 / a_0 g_0}{\lambda^2 \Delta t^2} - \frac{v_0}{T g_0}$$

5. Limiti del modello EOQ <u>Ù</u>

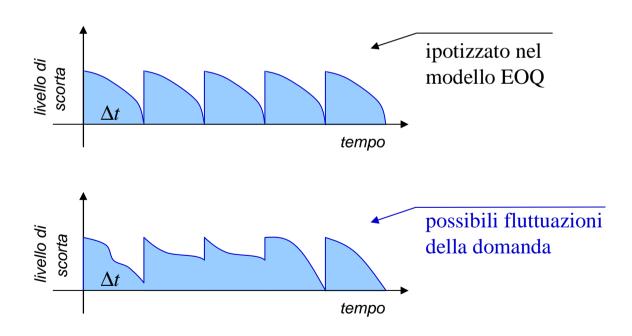
- Il modello EOQ non consente di
 - 1) esprimere il costo di spedizione in funzione della quantità del rifornimento e/o della distanza dal fornitore



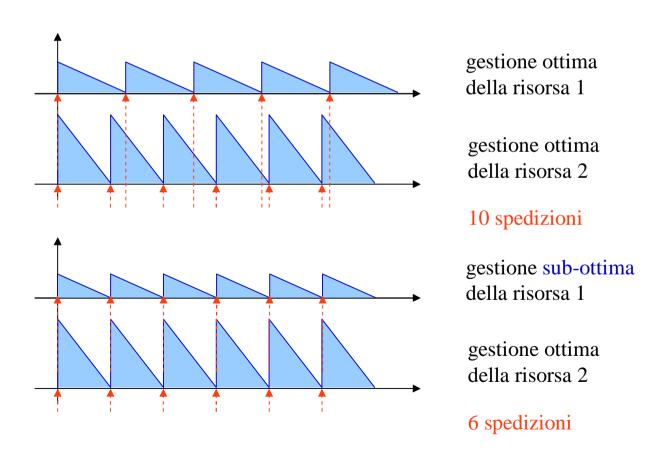
- Il modello EOQ non consente di
 - 2) esprimere l'effetto sui costi di giacenza di variazioni del valore delle risorse nel tempo



- Il modello EOQ non consente di
 - 3) tenere conto di un andamento irregolare dell'assorbimento di risorse dovuto, ad esempio, a variazioni della domanda da parte del mercato



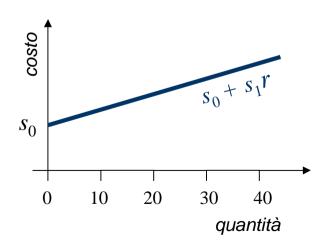
- Il modello EOQ non consente di
 - 4) ottimizzare la gestione contemporanea di più scorte



- Il primo di questi quattro limiti:
 - 1) esprimere il costo di spedizione in funzione della quantità del rifornimento e/o della distanza dal fornitore

può in alcuni casi essere superato con lievi modifiche.

Nel caso infatti di assorbimento costante $(b(t) = b_0 - a_0 t)$, se il costo di spedizione ha la forma $s(r) = s_0 + s_1 r$ la sua somma durante T è



$$s(\Delta t) = \frac{T}{\Delta t} [s_0 + s_1(b_0 - b_s)] =$$

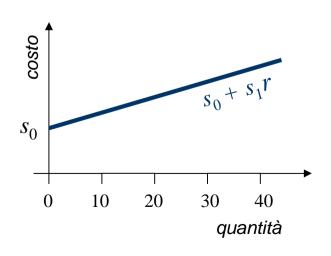
$$= \frac{T}{\Delta t} [s_0 + s_1 a_0 \Delta t] =$$

$$= \frac{T}{\Delta t} s_0 + T s_1 a_0$$

- Il primo di questi quattro limiti:
 - 1) esprimere il costo di spedizione in funzione della quantità del rifornimento e/o della distanza dal fornitore

può in alcuni casi essere superato con lievi modifiche.

Il termine di costo Ts_1a_0 non dipende dal periodo Δt e non contribuisce alla derivata prima del costo totale.



Quindi non influenza il valore Δt^* del periodo di rifornimento ottimo.

Si noti che ciò non è vero in caso di assorbimento non costante.

$$s(\Delta t) = \frac{T}{\Delta t} s_0 + T s_1 a_0$$