
GESTIONE DELL'INFORMAZIONE AZIENDALE prova scritta del 5 aprile 2005

Seconda parte

1. Un impianto industriale fabbrica due prodotti, $A \in B$, ciascuno costituito da due componenti $X \in Y$. Gli schemi di assemblaggio sono rappresentati in figura:

In una settimana, la domanda di prodotto A e B (numero di pezzi) è riportata nella tabella seguente:

	lunedì	martedì	mercoledì	aiovedì	venerdì
	iurieur	manteur	mercolear	gioveai	venerui
domanda A	10.000	12.000	8.500	4.200	7.500
domanda B	11.200	8.300	6.500	9.000	10.000

I componenti X e Y vengono prelevati da due magazzini distinti M_X , M_Y e spediti all'impianto P. Il costo di spedizione, leggibile in \in nella tabella che segue, dipende dalla distanza e dalla quantità spedita; inoltre, ogni spedizione comporta un costo fisso. Non vi sono limiti alle quantità spedite, ma, in dipendenza di altri impegni dei trasportatori, i costi nei giorni pari sono aumentati del 30% rispetto a quelli dei giorni dispari.

Costi di spedizione nei giorni pari (€)	costo fisso	ulteriore costo per unità spedita
spedizione da M_X	200,00	0,003
spedizione da M _Y	250,00	0,002

Ogni giorno di giacenza di un componente in magazzino comporta a sua volta un costo che, chissà perché, varia di giorno in giorno:

Costi di giacenza (€)	lunedì	martedì	mercoledì	giovedì	venerdì
giacenza X	0,002	0,003	0,003	0,004	0,004
giacenza Y	0,006	0,007	0,008	0,009	0,010

(la merce acquisita la mattina resta in carico allo stabilimento fino alla sera, per cui ad es. 3000 unità *X* acquisite lunedì costano 6,00€di giacenza. Se 500 di esse vengono consumate, le 2500 rimanenti il martedì costeranno altri 7,50€di giacenza, e così via).

Calcolare il costo di una politica ottimale di gestione delle spedizioni dai due magazzini. Se si decidesse di rifornirsi di entrambi i componenti da un unico magazzino, sarebbe possibile ottenere una politica ottimale applicando il metodo di Wagner e Whitin?

Soluzione

Sapendo che ogni pezzo A (ogni pezzo B) richiede 2 (richiede 4) pezzi X e 3 (1) pezzi Y, possiamo tradurre la domanda giornaliera di A e B in termini di X e Y:

	lunedì	martedì	mercoledì	giovedì	venerdì
domanda X	64.800	57.200	43.000	44.400	55.000
domanda Y	41.200	44.300	32.000	21.600	32.500

Calcoliamo ora separatamente il fabbisogno cumulativo di X e di Y dal giorno s al giorno t:

domanda X	lunedì	martedì	mercoledì	giovedì	venerdì
lunedì	64.800	122.000	165.000	209.400	264.400
martedì		57.200	100.200	144.600	199.600
mercoledì			43.000	87.400	142.400
giovedì				44.400	99.400
venerdì					55.000

domanda Y	lunedì	martedì	mercoledì	giovedì	venerdì
lunedì	41.200	85.500	117.500	139.100	171.600
martedì		44.300	76.300	97.900	130.400
mercoledì			32.000	53.600	86.100
giovedì				21.600	54.100
venerdì					32.500

Da questi dati ricaviamo i costi di spedizione da M_X e M_Y che occorre sostenere per soddisfare il fabbisogno dal giorno s al giorno t, tenendo conto del fatto che nei giorni dispari essi subiscono un incremento del 30%. Ogni casella delle tabelle seguenti riporta il costo sostenuto per spedire, nel giorno indicato dalla riga, le quantità necessarie per soddisfare il fabbisogno complessiva da quel giorno al giorno indicato dalla colonna: ad esempio, spedire di martedì i pezzi X necessari a coprire il fabbisogno fino a giovedì costa $823,30 \in$

spedizione X	lunedì	martedì	mercoledì	giovedì	venerdì
lunedì	303,38	435,38	534,62	637,08	764,00
martedì		371,60	500,60	633,80	798,80
mercoledì			253,08	355,54	482,46
giovedì				333,20	498,20
venerdì					280,77

spedizione Y	lunedì	martedì	mercoledì	giovedì	venerdì
lunedì	255,69	323,85	373,08	406,31	456,31
martedì		338,60	402,60	445,80	510,80
mercoledì			241,54	274,77	324,77
giovedì				293,20	358,20
venerdì					242,31

I costi di giacenza della merce acquisita il giorno *s* per coprire il fabbisogno fino al giorno *t* si calcolano imputando:

- all'intera spedizione, il costo di giacenza del giorno s
- all'intera spedizione detratta della merce consumata il giorno s, il costo di giacenza del giorno s+1

e così via.

Il risultato è riportato nelle tabelle seguenti:

giacenza X	lunedì	martedì	mercoledì	giovedì	venerdì
lunedì	129,60	415,60	759,60	1292,40	2172,40
martedì		171,60	429,60	873,60	1643,60
<i>mercoledì</i>			129,00	439,80	1044,80
giovedì				177,60	617,60
venerdì					220,00

giacenza Y	lunedì	martedì	mercoledì	giovedì	venerdì
lunedì	247,20	823,10	1495,10	2143,10	3443,10
martedì		310,10	790,10	1308,50	2413,50
mercoledì			256,00	623,20	1500,70
giovedì				194,40	811,90
venerdì					325,00

Il costo totale C(s, t) è quindi:

totale X	lunedì	martedì	mercoledì	giovedì	venerdì
lunedì	432,98	850,98	1294,22	1929,48	2936,40
martedì		543,20	930,20	1507,40	2442,40
mercoledì			382,08	795,34	1527,26
giovedì				510,80	1115,80
venerdì					500,77

totale Y	lunedì	martedì	mercoledì	giovedì	Venerdì
lunedì	502,89	1146,95	1868,18	2549,41	3899,41
martedì		648,70	1192,70	1754,30	2924,30
mercoledì			497,54	897,97	1825,47
giovedì				487,60	1170,10
venerdì					567,31

Secondo l'algoritmo di Wagner e Whitin il costo minimo c_t da sostenere per coprire il fabbisogno fino al giorno t è dato da

$$c_t = \min_{s < t} \left\{ c_s + C(s, t) \right\}$$

Posto $c_{domenica} = 0$, applicando l'algoritmo ai due casi in esame si ricava rispettivamente per X e Y

$c_{lunedi} = 432,98$	$c_{luned\hat{\imath}} = 502,89$
$c_{marted\hat{\imath}} = 850,98$	$c_{marted\hat{\imath}} = 1.146,95$
$c_{mercoledi} = 1.233,06$	$c_{mercoledi} = 1.644,48$
$c_{giovedi} = 1.646,32$	$c_{giovedi} = 2.044,92$
$c_{venerdi} = 2.147,09$	$c_{venerd\hat{\imath}} = 2.612,22$

In entrambi i casi, la politica ottimale consta di

- una prima spedizione il lunedì per coprire il fabbisogno di lunedì e martedì
- una seconda spedizione il mercoledì per coprire il fabbisogno di mercoledì e giovedì
- una terza e ultima spedizione il venerdì per coprire il fabbisogno di venerdì

Il costo complessivo di queste politiche è pari a €4.759,32.

Il metodo di Wagner e Whitin non può essere applicato direttamente alla gestione di due risorse. Tuttavia si conservano gran parte delle proprietà che consentono di risolvere il problema come programmazione dinamica (ad esempio la limitatezza del poliedro e la concavità della funzione obiettivo).